
Department of Computer Sciences and IT,

The University of Lahore

Heap Data Structure

Rao Muhammad Umer

Lecturer,

CS and IT Department,

The University of Lahore.

Web: raoumer.com

1

http://raoumer.com/

Outlines
• Heap

• Max/Min Heap

• Operations on Heap

• Build Heap

• Complexity Analysis of Heap

• Binomial Heap

• Fibonacci Heap

• Applications of Heap

• Heap Sort

• Priority Queue

• Event-Driven Simulation
2

Heap Data Structure

Heap: A special form of complete

binary tree that key value of each node is

no smaller (larger) than the key value of

its children (if any).

Heaps are based on the notion of

a complete tree

A binary tree is completely full if it is of

height, h, and has 2h+1-1 nodes.

3

Complete Binary Tree

• A binary tree of height, h, is complete iff :

it is empty OR

 its left subtree is complete of height h-1 and its

right subtree is completely full of height h-2 or

its left subtree is completely full of height h-1

and its right subtree is complete of height h-1.

• A complete tree is filled from the left

4

A complete binary tree in nature

Binary tree in Computing

6

Max/Min Tree

Max-Tree:

 A max tree is a tree in which the key
 value in each node is no smaller than the
 key values in its children.

Min-Tree:

 A min tree is a tree in which the key
 value in each node is no larger than the
 key values in its children.

7

Min Tree Example

2

4 3

4 8 7

9 9

Root has minimum element.
8

Max Tree Example

9

4 8

4 2 7

3 1

Root has maximum element.
9

Max/Min Heap

Max-Heap: root node has the largest key.

 A max heap is a complete binary
 tree that is also a max tree.

Min-Heap: root node has the smallest key.

 A min heap is a complete binary
 tree that is also a min tree.

10

Min Heap With 9 Nodes

Complete binary tree with 9 nodes.

11

Min Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a min tree.

2

4

6 7 9 3

8 6

3

12

Max Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a max tree.

9

8

6 7 2 6

5 1

7

13

 Heap Height

 Since a heap is a complete binary

tree, the height of an n node heap is

log2 (n+1).

14

9 8 7 6 7 2 6 5 1

1 2 3 4 5 6 7 8 9 10 0

A Heap Is Efficiently Represented As An Array

9

8

6 7 2 6

5 1

7

15

Moving Up And Down A Heap

9

8

6 7 2 6

5 1

7

1

2 3

4 5 6 7

8 9

16

Inserting An Element Into A Max Heap

Complete binary tree with 10 nodes.

9

8

6 7 2 6

5 1

7

7

17

Inserting An Element Into A Max Heap

New element is 5.

9

8

6 7 2 6

5 1

7

7 5

18

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7

7

19

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7 7

20

Inserting An Element Into A Max Heap

New element is 20.

9

8 6

7

2 6

5 1

7

7 7

21

Inserting An Element Into A Max Heap

New element is 20.

9

8 6

7

2 6

5 1

7

7 7

20

22

Inserting An Element Into A Max Heap

Complete binary tree with 11 nodes.

9

8 6

7

2 6

5 1

7

7 7

20

23

Inserting An Element Into A Max Heap

New element is 15.

9

8 6

7

2 6

5 1

7

7 7

20

24

Inserting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

7 7

20

8

25

Inserting An Element Into A Max Heap

New element is 15.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

26

Complexity Of Insert

Complexity is O(log n), where n is

heap size.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

27

Removing The Max Element

Max element is in the root.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

28

Removing The Max Element

After max element is removed.

8

6

7

2 6

5 1

7

7 7 8

9

15

29

Removing The Max Element

Heap with 10 nodes.

8

6

7

2 6

5 1

7

7 7 8

9

15

Reinsert 8 into the heap.
30

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

31

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

32

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

8

33

Removing The Max Element

Max element is 15.

6

7

2 6

5 1

7

7 7

9

15

8

34

Removing The Max Element

After max element is removed.

6

7

2 6

5 1

7

7 7

9

8

35

Removing The Max Element

Heap with 9 nodes.

6

7

2 6

5 1

7

7 7

9

8

36

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7 9

8

37

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

38

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

7

39

Complexity Of Remove Max Element

Complexity is O(log n).

6 2 6

5 1

7

9

8

7

40

Construction, Insertion and

Deletion of heap

• See animation of construction of heap

• See animation of insertion of heap

• See animation of deletion of heap

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/construction of heap/conheap.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/insertion heap/insertion.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion heap/deletion.exe

Initializing A Max Heap

Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

7 10

1

11

5

2

Initializing A Max Heap

Start at rightmost array position that has a child.

8

4

7

6 7

8 9

3

7 10

1

11

5

2

Index is n/2.

Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

7 10

1

5

11

2

Initializing A Max Heap

8

4

7

6 7

8 9

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

Find a home for 2.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 5

1

11

Find a home for 2.

10

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

1

11

Done, move to next lower array position.

10

5

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

1

11

10

5

Find home for 1.

11

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Done.

1

Time Complexity

Cost of Max-Heapify (A, i) is O(log n)

Number of node/elements to be processed is n.

Total Time Complexity is O(n log n).

BINOMIAL HEAPS

Binomial Tree

Def. A binomial tree of order k is defined

recursively:

• Order 0: single node.

• Order k: one binomial tree of order k –1

linked to another of order k – 1.

Binomial Tree

Binomial Heap

Def. A binomial heap is a sequence of

binomial trees such that:

• Each tree is heap-ordered

• There is either 0 or 1 binomial tree of order

k

Binomial Heap

Binomial Heap

FIBONACCI HEAPS

Fibonacci Heap

Basic Idea

• Similar to binomial heaps, but less rigid

structure

• Binomial heap: eagerly consolidate trees

after each INSERT; implement

DECREASE-KEY by repeatedly

exchanging node with its parent

FIBONACCI HEAPS

IN NATURE

Application of Heap

Sorting(Heap Sort)

Priority Queues

Heap Sort

• Algorithm for Heap Sort

• Time Complexity is O(n log n).

71

Heap Sort

• Array interpreted as a binary tree

 1 2 3 4 5 6 7 8 9 10

 26 5 77 1 61 11 59 15 48 19

input file

26 [1]

5 [2] 77 [3]

1 [4] 61 [5] 11 [6] 59 [7]

15 [8] 48 [9] 19 [10]

72

Heap Sort

• Adjust it to a MaxHeap

77 [1]

61 [2] 59 [3]

48 [4] 19 [5] 11 [6] 26 [7]

15 [8] 1 [9] 5 [10]

initial heap

73

Heap Sort

• Exchange and adjust
77 [1]

61 [2] 59 [3]

48 [4] 19 [5] 11 [6] 26 [7]

15 [8] 1 [9] 5 [10]

exchange

74

Heap Sort

61

[1]

48
[2]

59
[3]

15
[4]

19
[5]

11
[6]

26
[7]

5
[8]

1
[9]

77
[10]

59
[1]

48
[2]

26
[3]

15
[4]

19
[5]

11
[6]

1
[7]

5
[8]

61
[9]

77
[10]

(a)

(b)

75

Heap Sort

48
[1]

19
[2]

26
[3]

15
[4]

5
[5]

11
[6]

1
[7]

59
[8]

61
[9] 77

[10] 26
[1]

19
[2]

11
[3]

15
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(c)

(d)

59

61 59

48

76

Heap Sort

19
[1]

15
[2]

11
[3]

1
[4]

5
[5]

26
[6]

1
[7]

59
[8]

61
[9] 77

[10] 15
[1]

5
[2]

11
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(e)

(f)

59

61 59

48

48 26

26 19

77

Heap Sort

11
[1]

5
[2]

1
[3]

1
[4]

5
[5]

26
[6]

1
[7]

59
[8]

61
[9] 77

[10] 5
[1]

1
[2]

1
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(g)

(h)

59

61 59

48

48 26

26 19

19 15

15

11

78

Heap Sort

• So results

1
[1]

1
[2]

1
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(i)

59

48 26 19 15

11 5

77 61 59 48 26 19 15 11 5 1

Priority Queue

• A priority queue is a data structure for

maintaining a set S of elements, each with

an associated value called a key.

• Two kinds of priority queues:

• Min priority queue

• Max priority queue

Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with min priority (top)

 remove element with min priority (pop)

Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with max priority (top)

 remove element with max priority (pop)

Priority Queue

• Algorithm for Priority Queue

Complexity Of Operations

Using a heap:

• empty, size, and top => O(1) time

• insert (push) and remove (pop) =>

O(log n) time where n is the size of the

priority queue

Priority Queue

• Use max-priority queues to schedule jobs on a

shared computer

• The max-priority queue keeps track of the jobs

to be performed and their relative priorities

• When a job is finished or interrupted, the

scheduler selects the highest-priority job from

among those pending by calling EXTRACT-

MAX

• The scheduler can add a new job to the queue

at any time by calling INSERT

Event-Driven Simulation

• Goal: Simulate the motion of N moving

particles that behave according to the laws

of elastic collision.

Event-Driven Simulation

Significance: Relates macroscopic

observables to microscopic dynamics

• Maxwell-Boltzmann: distribution of speeds

as a function of temperature.

• Einstein: explain Brownian motion of

pollen grains

Over-All Analysis of Heap

Some More Food

