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Preface

This stream of consciousness tries to provide a field theoretical perspective
of condensed matter physics.

1
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Review as an Introduction

When we look around, we see stuff (many of us do, if not all). Chalk
and cheese. Some of us even wonder what is common between chalk and
cheese (the difference is, hopefully, clear to all!). After bit of thought we
realize that both of these are “solids” – “something” that “resists shape
change”; more technically stated, “something” that has a nonzero shear
modulus (at zero frequency). The last statement has made the notion
of “resists shape change” precise. Let us now try to make the notion of
“something” clear. Take cheese – we know that it is made of “milk atoms”,
yet cheese is different from milk. More importantly, we realize that the
same “milk atoms” can organize themselves into milk (liquid) or cheese
(solid)! Thus, the “something” is a phase – a state of many “milk atoms” that
has a distinct feature – ability to resist shape change. Moral:

PHASES

A large number objects (“degrees of freedom”) that interact with each other can
organize themselves into distinct phases.

A little reflection will show that much of human activity is focused on
making different phases from some set of degrees of freedom. For exam-
ple, in making “better” (phases with desired properties) materials from a
collection of atoms.

A natural question to ask is this: Suppose we are given a large number
of degrees of freedom and the interactions between them, what are all the
distinct phases that they can organize themselves in? Condensed matter
physics is the subject that attempts to answer this question – at least this
is what we mean by “condensed matter physics”. One might have been
brought up to think that this is “a matter of detail” – we “just” have to
solve the many body problem. Some of us even think that there are more

3



4 1. REVIEW AS AN INTRODUCTION

Figure 1.1: Our experience across the scales. [?] fig:scales

“fundamental” questions like – “what are the ultimate objects that make
stuff up?”

Our approach is strongly influenced by what we see; we want to think
about things that we see1. So, what do we see? See fig. 1.1. We learn a
couple of things...

• At every scale, there are some “natural” degrees of freedom that in-
teract with each other to “produce” phases at the “next bigger” scale.
E. g., the liquid phase of water is made of water molecules.

• Objects that appear “fundamental” at any given scale are themselves
“made of” even “more fundamental” objects of a smaller scale.

and even puzzle...

• How the “information” from the smallest scale “reach” the largest
scale? Colloquially, how does the mass of the Higgs affect the vis-
cosity of water?

The gist of all this: We are interested in what physics emerges at a cer-
tain “long wavelength” scale (infrared physics) when we know the “mi-
croscopic degrees” of freedom and their interactions at a smaller scale (ul-
traviolet physics).

1As opposed to want to see things that we think about!
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THE QUESTION

The question is posed precisely, by specifying: (i) the ultraviolet scale (ii) micro-
scopic degrees of freedom at that scale, and (iii)their interactions. Once this is
done, the question to be answered is what is the infrared physics? What sort of
phases emerge?

We have at hand new issues to discuss. What exactly do we mean by
a microscopic degree of freedom (ultraviolet question)? And what do we
really mean by a phase (infrared question)? These are indeed somewhat
difficult notions, and we will aim for clarity rather than precision.

One way to introduce degrees of freedom at the ultraviolet scales is to
have some “physical idea” regarding the symmetries of the system at the
that scale. Suppose, we believe (a question that can only be settled by ex-
periment) that the system has a symmetry groupG on the ultraviolet scale,
the microscopic degrees of freedom with be some sort of representation of
the group realized on an arena. Arena here stands for space, time or space-
time. In other words, given a collection of arena points, each point of the
arena has a representation of the group G associated with it – this leads
naturally to the notion of field particularly if the arena is a space or space-
time continuum. We will also include lattices as arenas, and the resulting
theories are really lattice field theories, although we will call these as field
theories. Symmetries may be classified as being arena symmetries or inter-
nal symmetries. Symmetries determine the allowed terms in the Hamilto-
nian of the system; typically this specified “rules” for how fields at distinct
arena points interact with each other. Quite interestingly, this can in prin-
ciple lead a (an infinitely) large number of terms – “everything” allowed
by symmetry (we also sometimes require “locality”, a notion that we will
not explore).

Sounds abstract mumbo-jumbo? Lets look at an example. Consider
the arena to be square lattice in two dimensions, with sites are labelled
by i, placed in a nice periodic box. Someone tells us that our system on
the scale of the lattice has all the symmetries of the square lattice (arena
symmetries) and an internal symmetry Z2 – i. e., Ising symmetry. Follow
the rules...first find a “representation”2 of Z2. A variable σ ∈ {−1, 1} does
the job – we call σ an “Ising spin”. How does the symmetry act on the
Ising spin? Z2 has two elements – I the identity and F the filp element
(F 2 = I). The action of Z2 on σ is easy: Iσ = σ and Fσ = −σ. Now paste
an Ising spin at each arena site i (lets us say there are N sites) and call it σi.
A field configuration is now specified by specifying the spin state at each

2Dont rush off to read a book on group theory.
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site i, i. e., |ψ〉 = {σi}. Good. On to the Hamiltonian...we are given that
the system has all the square lattice symmetries in addition to the internal
Ising symmetry. One of the simplest possible Hamiltonian is

eqn:IsingHam
H = −J

∑
〈ij〉

σiσj (1.1)

where 〈ij〉 stands for nearest neighbour bonds, where J is a coupling con-
stant (with units of energy). Its easy to check that this system has all the
required symmetries. An interesting question (whose answer we will re-
quire later) for you to answer is this: Write out a couple of more terms that
respect all the symmetries of the system.

The next question: What all phases can such an Ising system realize?
We will continue to work with an intuitive notion of what a phase is, and
in fact, ask how do we distinguish between two different phases? Let us
begin by considering the ground state of the system defined in eqn. (1.1).
One possible ground state is

|G ↑〉 = {+1i}. (1.2)

Note that the this state has all the symmetries of the system, except the Z2

symmetry! In fact, action of F on |G ↑〉 gives the other distinct ground
state

F |G ↑〉 = |G ↓〉 = {−1i} (1.3)

We say that the state is a broken symmetry state. Again, all this happens at
zero temperature – this system picks either |G ↑〉 or |G ↓〉 as its ground
state which breaks the Z2 symmetry of the system.

What about at a finite temperature T ? First of all how does one describe
the state of the system at a finite temperature. Recall from elementary sta-
tistical mechanics, that the state is described by the thermal density matrixρ

ρ =
1

Z
e−H/T (1.4)

eqn:PFIsing

where Z = tr e−H/T . We could check if the density matrix is symmetric
under the Z2 group. In other words, you are asking if the state changes
under a symmetry operation. If you naively apply an Z2 element to ρ, you
will come away with the (wrong) conclusion that ρ is Z2 symmetric. What
you realize is that expression for ρ is really a short from for the following.
First apply an “external symmetry breaking field” B

HB = H −B
∑
i

σi (1.5)
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and obtain ρh as

ρB =
1

ZB
e−HB/T . (1.6)

Now first take the thermodynamic limit N → ∞ and then switch off the
external field B, i. e.,

ρ = lim
B→0

lim
N→∞

ρB (1.7)
eqn:TLimit

and, in fact, eqn. (1.4) is a short from for this expression. In particular, you
realize that the ground state will be |G ↑〉 is the limit B → 0 is taken as
B → 0+. In other words, if symmetry is indeed broken, the answer for ρ
will depend on how the limit B → 0 is taken!

What if you take the limit in the opposite order? Then, you will find
that the symmetry is never broken, i. e., a finite system will not break
symmetry. In other words, symmetry breaking occurs only in the ther-
modynamic limit. You should understand (review) this idea very carefully
before you proceed.

What if you were at infinite temperature?3 If you work out carefully
the density matrix will trun out to be

ρ∞ = constant (1.8)

(what is the constant?),i. e., every state is equally probable. It is easy to see
that the state is symmetric under Z2!

The discussion leads us to the conclusion. At zero temperature, the sys-
tem in equilibrium breaks symmetry, while at infinite temperature, the sys-
tem is fully symmetric. This is a good point to inject the notion of “phase”.
We say that broken symmetry zero temperature state describes an ordered
phase. Roughly what this means is that if you know the state of a single
spin, then you will be able to say something about the state of any another
spin that is even “very far away”, the spins have “ordered”. At T = ∞
the story is quite the opposite – each spin is “doing its own thing”, and
the system is literally disordered, i. e., in a disordered phase! Note that the
language is funny, if a bit confusing – ordered phase↔ broken symmetry,
disordered phase↔ symmetry preserved! Finally, we recall that ordered
(broken symmetry) phases can be characterized by an order parameter, an
quantity that is manifestly not invariant under the symmetry group. In our
Ising example, the magnetization defined by

M =
1

N

∑
i

σi (1.9)
eqn:OP

serves a the order parameter. Bottomline:
3Do not palpitate. T =∞ physics is same as any finite T physics with J = 0.
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SYMMETRY AND PHASES

Symmetry can be used to distinguish phases. An ordered phase are described by
a broken symmetry state, and a disordered phase by a symmetric state. Broken
symmetry phase can by characterized by an order parameter.

Here I need to break the discussion of the Ising model for making an
important point. Do not come away with the idea that phases are to be
distinguished solely by symmetry. Nothing can be further from the truth.
In fact, in many cases symmetry distinct phases will both have the same
symmetry. Consider for example a simple two band tight binding model
for spinless electrons. If the electron filling is such that the valance band if
half filled, then we have metallic (liquid like) phase of the electrons, while
if the filling is unity, then we have the band insulating (solid like) phase.
In both cases the states will have all the symmetries of the system. What
distinguishes these phases are their properties or response functions (i. e.,
difference between solid and liquid).

PHASES AND RESPONSE FUNCTIONS

Phases are not always distinguished by symmetry. Phases can be distinguished
by their reponse functions.

Up until very recently (say about thirty years), it was thought that
properties and symmetries are the sole criteria to distinguish phases. This
has changed drastically in the last decade. We have realized that two addi-
tional concepts are crucially important. The first is notion of entanglement
and the second is the notion of topology. We will not pause here to discuss
these ideas, suffice it to mention

NEW DEVELOPMENTS

Notions of entanglement and topology are also essential to describe phases of sys-
tems with many degrees of freedom.

Gist of the discussion above (started with the Ising model), phases can be
distinguished by symmetries, properties, entanglement and topolgy.

Back to the Ising model. We have seen that the Ising model has two
phases. Can we change the phase from one to the other? The answer is
of course, “yes”, as we all know, for example, by changing the tempera-
ture T . Suppose we assume that the phase change to occur at a critical
temperature Tc, i. e., for T < Tc the system is in the ordered phase while
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for T > Tc it is in the disordered phase. There are a couple of possibil-
ities. First possibility is that the phase change in discontinuous, called a
first order transition. This is usually observed as a discontinuous jump in
the order parameter at Tc, thus M(T−c ) 6= 0 while M(T+

c ) = 0. The second
possibility is of a continuous phase transition, where M(T ) is continuous at
Tc, whth M(T < Tc) 6= 0 while M(T ≥ Tc) = 0. In other words, M(T ) is
continuous, but not analytic at Tc.

First order transitions occur when the free energy of the system has dis-
tinct local minima, the ordering of which changes at Tc – this is an analog
of a quantum mechanical level crossing. Such transitions typically have
a latent heat associated with them. Continuous transitions on the other
hand arise form “truly cooperative” behaviour where the system orga-
nizes “scale by scale” as we approach Tc from either side. Can we tell a
priori if our Ising model will have a first order or continuous transition?
We know, of course, that the Ising model in spatial dimensions greater
than 2 has a continuous transition at at Tc > 0. We know this from the
exact solution of Onsager in 2 dimensions, and from numerical work (and
experiment on Ising magnets) in 3 dimensions.

As you will be aware continuous transitions have rich physics in the
some of which we will now review. We have already seen that the order
parameter has a non-analytic behaviour near Tc. In fact, almost all inter-
esting quantities have non-analytic character manifested as singularities
in observables. To carry forward the discussion, let me introduce a dimen-
sionless quantity t to take the discussion forward

t =
T − Tc
Tc

. (1.10)
eqn:tdef

The specific heat suffers a divergence near Tc and behaves as

CV = ACV± |t|−α (1.11)

where ACV± are quantities on the “right” and “left” of the transition. The
order parameter, we have ready seen, behaves as

M = AM± |t|β (1.12)

where AM+ is, obviously, zero. The magnetic susceptibility also diverges as

χ = Aχ±|t|−γ (1.13)

At the critical point, the system has a nonlinear response to an external
field. In the Ising case, we write

M = ABB1/δ (1.14)
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Finally, away from Tc, correlations between spins on long scales |x| behave
as e−|x|/ξ/|x|d−2. The correlation length ξ characterizing the correlations be-
tween spins diverges as T → Tc as

ξ = Aξ±|t|−ν . (1.15)

If you are seeing it for the first time, the most confounding aspect (shaking
your very faith in sutff like dimensional analysis!) of continuous phase
transitions is the correlation function between the spins at Tc

G(r) ∼ 1

|x|d−2+η
. (1.16)

The quantities α, β, γ, δ, ν, η have been christened as critical exponents, and
the quantities A± are called amplitude factors.

The most notable aspect of continuous transitions is that they have uni-
versal physics in them. To see what this means, let us first understand some-
thing that is not universal. Take, for example, Tc. Tc will depend strongly
on the nature of the lattice – square lattice, triangular lattice, honeycomb
lattice each will have its own Tc. On the same lattice, Tc will change if
there are next neighbour interactions (recall that eqn. (1.1) had only near-
est neighbour interactions.) Now for universal physics – what is found
is that critical exponents and amplitude ratios are universal (note amplitude
factors are not universal, the ratios A+/A− are), for the Ising model they
depend only on the spatial dimension! What is even more striking is that
it does not even matter how exactly the Ising symmetry is realized! The
liquid-gas critical point (it takes some though to realize how the liquid-gas
system realizes Ising symmetry) has exactly the same critical exponents as
the magnetic critical point! In fact, this statement is true non-only for Ising
systems, but systems with any symmetry. For a different symmetry, the
critical exponents are generally different from the Ising case, but all sys-
tems that realize the given symmetry at a similar critical point will have
the same long wavelength physics as characterized by the critical expo-
nent. The key is to look at the long wavelength limit, i e., on (arena)scales
much larger than the ultraviolet (lattice) scale. This usually goes under the
name of a scaling limit. Lets box this:

UNIVERSAL PHYSICS IN THE SCALING LIMIT

Long wavelength physics near a critical point is universal in the sense that on
scales much larger than the ultraviolet short distance lattice scale, physics is de-
termined by a set of numbers (critical exponents and amplitude ratios) whose
values are determined solely by things like symmetry and spatial dimension and
not by the microscopic details.
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Let me add a few important things to this discussion. First thing is that
there are many universal critical exponents, perhaps this is a bit discon-
certing already. Actually, the situation is not all that bad. The remarkable
thing is that these exponents are not all independent. There are relation-
ships between various exponents that are brought about by various things
like conservation laws etc. For example,

α + 2β + γ = 2 (Rushbrooke’s Law)
eqn:Rushb

(1.17)
β(δ − 1)− γ = 0 (Widom’s Law)

eqn:Widom
(1.18)

γ − ν(2− η) = 0 (Fischer’s Law)
eqn:Fish

(1.19)
νd+ α = 2 (Hyperscaling law, not always valid )

eqn:Hyper
(1.20)

In fact, at the critical point of the Ising model (which is called the
Wilson-Fischer fixed point) there are only two independent critical expo-
nents.

We will now go in a different direction, motivated by Landau and
Ginzburg, and others. We will now write down a field theory in the usual
sense of the term that captures the physics of the Ising model. Our arena is
now a periodic chunk of a d-dimensional continuum space whose points
are labelled by x. We know that our system has all the arena symmetries,
and the Z2 symmetry. A theory is constructed by sticking at each point a
real scalar field φ (the real numbers is a vector space on which the action
group Z2 can be represented), the field being denoted by φ(x). We now
write down a Hamiltonian density (to make contact with elementary sta-
tistical mechanics, what we write down must be really interpreted as the
Hamiltonian density divide by temperature.)

H(x) = |∇φ|2 + V (φ2) (1.21)
eqn:LGDens

and

H[φ] =

∫
ddxH(x). (1.22)

eqn:LG

The partition function is

Z =

∫
Dφ e−H[φ]. (1.23)

Everything is written down to make the Z2 symmetry explicit.
Note that the theory in eqn. (1.22) is really a quantum field theory writ-

ten in Euclidean time – and example of quantum classical correspondence.
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Before discussing anything further, I want to point out a crucially impor-
tant physical idea. Assuming that the volume of the d-dimensional peri-
odic box is V , we can write

φ(x) =
1√
V

∑
k

φ(k)eik·x (1.24)
eqn:finFT

as a Fourier transform. At this stage the momentum k runs over all pos-
sible values, in fact, kµ = 2πnµ

Lµ
, µ = 1, . . . , d where nµ is any integer and

Lµ is the length of the µth edge of the box (V =
∏

µ Lµ). However, this
cannot be physically meaningful! We really do not know the physics be-
low some microscopic scale (atomic scale, if we are modeling Ising model
physics with eqn. (1.22)). We must explicitly acknowledge this. This we do
by introducing a momentum cutoff Λ into the theory (it is very reasonable
to picture Λ to the of the order of the inverse lattice spacing of the Ising
model discussed previously). Thus, in writing eqn. (1.22), what we really
mean is that

φ(x) =
1√
V

∑
|k|≤Λ

eik·xφ(k) (1.25)

This is a generic idea, in that every field theory we write down will have
an ultraviolet cutoff. One may interpret the cutoff as an explicit acknowl-
edgement that we do not know physics at arbitrary small scales.

What can we say about the phases of the theory eqn. (1.22)? To answer
this, we need some more information about V (φ2). Let us write

V (φ) =
r

2
φ2 +

u

4
φ4 (1.26)

eqn:Phi4

taking u > 0 (for stability). We see immediately that r = 0 is special point
(for a fixed u.) When r > 0, any nonzero value of φ(x) is energetically
penalized by V (φ), but this is not the case when r < 0. When r < 0, the
field φ itself may pick up an expectational value, and the cheapest field
configuration that does this is constant field φ(x) = φ0 =

√
−r/u. In this

case, it is clear that the system breaks the Z2 symmetry.
Having established that the field theory eqn. (1.22) has an ordered phase

r < 0 and a disordered phase r > 0, it is natural to ask about the point r = 0
which is the critical point. Based on our argument about universality, we
realize that the physics of this critical point must be same as that of the
Ising model in the scaling limit! This is already shows some very deep
things, in particular the connection between statistical mechanics prob-
lems and quantum field theories.
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Questions abound. Why do we have universality? “Where do the de-
tails of the system go?” How to obtain the universal physics (e.g. critical
exponents) from theory? Wilson provided a solid framework that not only
answers these questions, but also provides for a deeper understanding of
what really a quantum field theory actually is. The framework is called
the “renormalization group” (RG for short). We will visit some of these
ideas next.

Wilson realized that everything that is “seen” about the critical point
can be inferred if nature implements the following

“WILSON’S LAW”
Any system at a critical point possesses a much bigger symmetry. This additional
symmetry is scale invariance. Systems at a critical point are scale invariant.

Many qualitative aspects discussed above follow from this “law”. The
natural question: what do we mean by scale invariance. Suppose, I am
using a meter scale to measure units. Instead, I decide to use 10 meters, as
the unit of measurement, and I call the old ten meters as a new one meter.
Suppose, I look at the physics using this new length scale and “plot things
out” in this new units, the polts can be made to look identical to what I
had with the old units, provided I scale the quantity I am looking at by
some factor. What is this factor? First let us call the scale factor s, in our
example the scale factor s = 10. For every ("long wavelength") quantity Q,
I will find that, if I scale the quantity Q by sdQ , then the plot in terms of the
old units is identical to what I had in the old units. We say that dQ is the
scaling dimension of the quantity Q. A system is scale invariant, if every
quantity “transforms by scaling” up on a scale transformation. In other
words, under a scale transformation,

xold 7→ s xnew (1.27)
eqn:xscale

all physical quantities are invariant (“plots in new units look same as old
units after scaling appropriately” )

Qold 7→ sdQ Qnew (1.28)

In particular, under this transformation, eqn. (1.21) will transform as

Hnew(xnew) = |∇newφnew|2 + Vnew((φ2)new) = Hold(xold) (1.29)

i. e., the Hamiltonian is invariant under scale transformations! If we are
close to, but not at the critical point, the Hamiltonian Hnew will have the
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same form (even with some additional symmetry allowed terms), but with
different parameters. To make this explicit: suppose we are not at the
critical point and H is given by eqn. (1.21) and eqn. (1.26). Under the
action of the RG transformation, H becomes� FIX NOTATION HERE

Hnew = |∇newφnew|2+P1(s)|∇newφnew|4+P2(s)φ2|∇newφnew|2+. . .+Vnew(φ2
new)

(1.30)
where Vnew(φ2

new) =
∑∞

p=1Rp(s, {up})(φ2
new)p, where up stands for the orig-

inal coefficients as in eqn. (1.26). In other words the RG transformation
generates all terms allowed by symmetry.

Another way to view RG is as a map on a space that describes the
Hamiltonian. Consider the space made of the coefficients and parameters
that enters the Hamiltonian. RG maps an initial point P in this space to
another denoted by

P 7→ RGs(P ), (1.31)

i. e. it produces a flow, usually called the RG flow. One constructs the RG
map to have a semi-group structure

RGs2(RGs1(P )) = RGs1s2(P ) (1.32)
eqn:RGSG

Now consider the possibility of a fixed point, and call it P ? (there may be
many fixed points; in fact such systems are the only interesting ones). Sup-
pose P is a point in the vicinity of the fixed point P ? – will will denote
P = P ? + δP . Now consider a transformation with s close to unity. We
expect

RGs(P ) ≈ P ? + Ls(P
?)δP (1.33)

where Ls(P ?) is a “linearized” version of RG transformation near P ?. The
next step is to find the “eigenvectors” of the linearized RG transformation.
These eigenvectors denoted by Oi are “operators” that are “natural” at the
fixed point P ? such that

Ls(P
?)Oi = λi(s)Oi (1.34)

From the semigroup structure of the renormalization group eqn. (1.32), it
is immediate that

λi(s1)λi(s2) = λi(s1s2) (1.35)

and along with λ1(1) = 1 suggests that

λi(s) = sµi (1.36)
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where µi is the scale dimension of the operator Oi. Now for an arbitrary
δP , we write

δP =
∑
i

giOi (1.37)

to get
Ls(P

?) =
∑
i

gis
µiOi (1.38)

We see the key interesting point. If µi > 0 the strength of the operator
increases and the RG transformation takes us further away from the fixed
point. Such operators are called relevant (superrenormalizable in field the-
ory literature). If µi = 0 this operator is called marginal. If µi < 0, then
the operator Oi is irrelevant. The final concept that we need is that of the
critical manifold (or critical surface) near P ?. The plane spanned by the
marginal and irrelevant operators is tangent to the critical surface. Any start-
ing Hamiltonian on the critical surface will stay on that surface under RG
flow.

PHASES AND CRITICAL POINTS

A fixed point with no relevant operators describes a phase, while a fixed point with
atleast one relevant operator is a critical point.

These ideas offer striking explanations of universality and scaling. The
central point is that at any fixed point P ?, nature allows only a handful of
relevant operators. In other words, the critical surface at P ? is a very high
dimensional manifold! This means most of the operators (interactions) in
the Hamiltonian are irrelevant, and all of the physics at the critical points
are determined by the relevant/marginal operators. This is why the de-
tails of the Hamiltonians wash away an physics is determined by a few
parameters, the origin of universality.

Also, we see that the free energy density of a Hamiltonian near the
critical point has the following property

f({gi}) = s−df({sµigi}), (1.39)

i. e., the free energy is a generalized homogeneous function of its param-
eters! The singular behaviour of thermodynamic quantities. The scaling
laws also pop out! All critical exponents are determined solely by the
scaling dimensions of relevant operators...so they are constrained, and this
gives the scaling laws.
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Wilson not only formulated these concepts, but also provided a calcu-
lational framework to implement the renormalization group transforma-
tion, something that has come to be known as Wilsonian RG in the liter-
ature. There are other methods: analytical ones include, so called, field
theoretic RG, and then there is numerical RG (both of which Wilson him-
self contributed to). We will visit this to familiarize ourselves with some
calculational techniques.

A key idea implicit in Wilson’s approach (in contrast to what was in
vogue in quantum filed theory) was an explicit acknowledgement and
“respect” for the ultraviolet cutoff Λ. The essential question was how to
implement a scale transformation that “does not change” the ultraviolet
cutoff Λ. Here Wilson came up with an inspirational method, which not
only bring in conceptual clarity but also formulates a nice calculational
tool. Start with

Z =

∫
D[φ]e−H[φ], H[φ] =

∫
ddxh[φ] (1.40)

eqn:GenHam

where h[φ] has, in principle, all terms in φ allowed by symmetries. The
idea of defining RGs, for s > 1 is to first write the fields as “slow” and
“fast” variables

φ(x) =
1√
V

∑
|k|<Λ

s

eikxφ(k)

︸ ︷︷ ︸
Φ(x)

+
1√
V

∑
Λ
s
<|k|<Λ

eikxφ(k)

︸ ︷︷ ︸
ψ(x)

(1.41)

Now there is a three step process

Integrate: First is to “integrate out” the fast degrees of freedom to get a
new action (or Hamiltonian) for the slow degrees of freedom. Tech-
nically

Z =

∫
D[Φ]e−Heff[Φ] =

∫
D[Φ]

[∫
D[ψ]e−H[Ψ,φ]

]
(1.42)

eqn:PartFunc

Note that at this stage the partition function is unchanged, and all
that has happened in the “contribution” of fast degrees of freedom
have been accounted for. Usually, this is the most technically chal-
lenging part.

Rescale: The previous step has effectively reduced the cutoff scale, Λ to
Λ
s

. We restore the cutoff scale by replacing x 7→ sxnew or k 7→ knew
s

.
With this rescaling, the cutoff momentum scale is restored back to Λ.
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Renormalize: The final point (perhaps the most subtle) is to redefine the
fields so as to “keep some term fixed” (more on this will be said
later). This entails the following manipulations. First write (keep
in mind, x 7→ sxnew )

Heff[Φ] =

∫
ddxheff[Φ] (1.43)

Now define φnew such that

Φ(x) = ζ(s)φnew(xnew) (1.44)
eqn:RGphinew

where ζ(s) is the “field renormalization factor” (read on, don’t stop
here). We thus get

Hnew[φnew] =

∫
ddxnewhnew[φnew] (1.45)

where,
hnew[φnew] = sdheff[ζ(s)φnew] (1.46)

eqn:RGhtrans

The key point about renormalization is that ζ(s) is chosen so as to
“keep some term the same” in hnew and h. Stated in other words,
if we start with h keeping all terms in φ allowed by symmetry as in
eqn. (1.40), then hnew is another such expression with new coefficients
which depend, in principle, on the old coefficients and, in addition,
on s. The idea of renormalization is to choose the factor ζ(s) such
that the coefficient of one term (for example, the coefficient of (∇φ)2,
as we shall do later) is left invariant under the transformation. The
map h 7→ hnew defines RGs.

A fixed point now corresponds to the condition of equality of two func-
tions hnew[·] = h[·].

Lets get some action. Consider the following theory

h[φ] = (∇φ)2 + tφ2 −Bφ (1.47)

in eqn. (1.40), where I have also added as symmetry breaking field B. The
free energy density of this theory can be calculated exactly. We obtain the
free energy density as

f(t, B) = −B
2

4t
+

1

(2π)d

∫
|k|<Λ

ddk ln (k2 + t) (1.48)
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The specific heat is two derivatives of the free energy at zero magnetic
field. We get

cv = −∂
2f(t, 0)

∂t2
=

1

(2π)d

∫
|k|<Λ

ddk
1

(k2 + t)2
= Kd

∫ Λ

0

dk
kd−1

(k2 + t)2
∼ t

d−4
2

(1.49)
a result which is cutoff independent for d < 4. Here and henceforth

Kd =
2

(4π)d/2Γ(d/2)
(1.50)

eqn:Kddef

All this indicates that
α =

4− d
2

. (1.51)

Next we see that the susceptibility

χ =
1

2t
=⇒ γ = 1. (1.52)

Lets look at the correlation function

〈φ(x)φ(0)〉 =
1

(2π)d

∫
|k|<Λ

eikx

k2 + t
∼ e−|x|/t

−1/2

|x|d−2
(1.53)

We see two things. The correlation length ξ is

ξ = t−1/2 =⇒ ν =
1

2
(1.54)

and at t = 0,

〈φ(x)φ(0)〉 ∼ 1

|x|d−2
=⇒ η = 0. (1.55)

We see, reassuringly, that Fischer eqn. (1.19) is satisfied. I may add here
that exponents δ and β are not quite meaningful for this theory.

The above exact solution seems to suggest that t = 0 point is a critical
point of the theory as many interesting quantities are diverging there. Can
we see this from the RG? Lets turn the crank. First identify s > 1 and split
into fast and slow fields

φ(x) = Φ(x) + ψ(x) (1.56)

The energy density becomes

h[Φ, ψ] = (∇Φ)2 + 2∇Φ ·∇ψ + (∇ψ)2 + t(Φ2 + 2Φψ + ψ2) (1.57)
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It is easy (should be) to see that

heff[Φ] = (∇Φ)2 + tΦ2. (1.58)

We now see that

hnew[φnew] = sds−2ζ2(s)(∇newφnew)2 + sdζ2(s)tφ2
new (1.59)

Now the renormalization condition is that the coefficient of (∇φ)2 term
does not change. This gives

ζ(s) = s
2−d

2 (1.60)
eqn:FFscale

resulting in
hnew[φnew] = (∇newφnew)2 + s2t, φ2

new (1.61)

In other words, RGs acting on the Gaussian model again gives a Gaussian
model with new couplings t 7→ s2t. For the fixed point we demand

RGs(t) = t,=⇒ s2t = t (1.62)

This is satisfied by two values of t, t = 0 and t = ∞. Lets focus on
t = 0 fixed point. Is t > 0, then under RG, t will grow, i. e., t is a relevant
operator. So t = 0 fixed point is a critical point, and must have a diverging
lengths scale. It is easy to see that

ξ ∼ t−1/2 (1.63)

and ν = 1/2 as obtained in the analytical solution. Also η = 0 is imme-
diate. From the scaling law eqn. (1.20) γ = 1, and from eqn. (1.20), we
reproduce the analytical result of α. In other words, RG was able to pro-
vide us everything!

Ambition swells. What can RG tell us about an interacting theory,
we are impatient. But wait, there is more to understand in the Gaussian
model. We can ask some simple questions. Why did t map to s2t, why is
ζ(s) = s

2−d
2 ? Note that H in eqn. (1.40) is dimensionless. In other words,

since H ∼ L0 (L is length), its dimensions are

[[H]] = 0 =⇒ [[h]] = −d (1.64)

leading to

[[φ(x)]] =
2− d

2
(1.65)
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and
[[t]] = 2! (1.66)

These are the engineering dimensions of the objects involved. We see that
the critical exponents of the gaussian model are determined by the engi-
neering dimension of the relevant operator! This is some what disconcert-
ing...all this work to find the engineering dimensions, something that we
learnt in 11th standard!

1.0.1 Large N

We will now show how to approach the physics by considering models
with O(N) symmetry, particularly focusing on cases where N is large. The
canonical model for discussing this has aO(N) vectorφ ≡ (φ1, φ2, . . . , φN),
with a Hamiltonian density

h[φ] = (∇φ)2 + tφ2 +
u

2
(φ2)2 −Bφ1 (1.67)

The partition function

Z =

∫
D[φ] e−

∫
ddxh[φ(x)] (1.68)

First lets try a cheap stunt. Suppose, we say that the physics physics is
solely determined by the uniform expectation value of 〈φ〉 = φL (L stands
for Landau), we see that the energy density is minimized if

(t+ u|φL|2)φLa = Bδa1 (1.69)

Resulting in

|φL| = Θ(−t)
√
|t|
u
, (B = 0) (1.70)

leading to the Landau value of the exponent

βL =
1

2
. (1.71)

Also, at t = 0,

φL1 =

(
B

u

)1/3

(1.72)

given
δL = 3 (1.73)
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One also sees that

φLa =
B

t
δa1, t > 0 (1.74)

leading to
γL = 1. (1.75)

By analysing the free energy, one also find that the specific heat has a jump
at t = 0 leading to

αL = 0. (1.76)

Too cheap...critical exponents do not depend on N (on the symmetry), or
the spatial dimension d.

One can try a bit harder by including Gaussian fluctuations about φL.
As an exercise, you can show that nothing really changes, except α, which
becomes

αgaussian =
4− d

2
. (1.77)

(Question: Are scaling laws okay?)
Not satisfactory!
We will now try a different route, and try and solve the problem “ex-

actly”, but for this we have to pose the question in a suitable fashion. Dip-
ping into the work of stalwarts, we realize that an exact solution if feasible
when N → ∞, i. e., when the vector field φ has a very large number of
components, aka “flavors”. The key starting point of this discussion is the
observation that in the large-N limit the field φ2(x) (recall φ2 = φ · φ),
becomes “classical” if the problem is defined appropriately; i. e.,

〈φ2(x) · φ2(x)〉 ≈N→∞ 〈φ2(x)〉〈φ2(y)〉. (1.78)
eqn:Phi2

What on earth does “appropriately” mean? To see see write one loop per-
turbative expansion of the lhs of eqn. (1.78), and look at a few of “quantum
corrections”:

One sees a generic pattern – for a correction at the m-th order with `
loops, the term goes as umN ` as the solid bold lines are integrated over all
flavours. For example, the diagrams shown above contribute, respectively,
u2N , u3N2 and u3N . In fact, it can be easily seen that at mth order, the
diagram with the largest number of loops is when ` = m− 1; the first two
are the diagrams of this series that contribute, i. e., the “largest” mth order
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quantum correction goes as umNm−1. We see an opportunity...suppose we
redefine

u 7→ u

N
(1.79)

we see that the leading contribution at the m-th order goes as um

N
. As is

evident, this vanishes in the limit of N →∞, as do all other contributions.
A little thought will reveal that we can work with a much more general
scenario where tφ2 + u

2N
(φ2)2 is replaced by a more general “potential”

function

U(x) =
∞∑
p=1

upx
p (1.80)

with ups as the coupling constants, where we use φ2/N as the argument.
Only condition we need is that U(x)→∞ as x→∞.

We will now put down the theory with appropriate changes

h[φ] = (∇φ)2 +NU

(
φ2

N

)
−
√
NBφ1 (1.81)

eqn:ONmodel

where we have scaledB by an appropriate power ofN anticipating the fu-
ture. Note, symmetry has not been touched, only redefinition of coupling
constants. Observation eqn. (1.78) now suggests that φ2(x), put colloqui-
ally, takes a life of its own and can be thought of as another field σ(x), i. e.,
we want to impose

φ2(x) “ = ” Nσ(x) (1.82)

where the factor of N anticipates the future. We do this in the following
way

Z =

∫
D[φ]e−

∫
ddxh[φ] =

∫
D[φ]D[σ] ∆[φ2(x)−Nσ(x)]e−

∫
ddxh[φ] (1.83)

eqn:LNstart

where ∆ is the functional Dirac delta function. We now write the func-
tional Dirac delta by introducing another field λ(x) as

∆[φ2(x)−Nσ(x)] =

∫
D[λ]e−iλ(x)(φ2(x)−Nσ(x)) (1.84)

after which we get

Z =

∫
D[φ]D[σ]D[λ] e−

∫
ddxh[φ,σ,λ] (1.85)

where, after some rearrangement,

h[φ, σ, λ] = φ · (−∇2 + iλ)φ+NU(σ)− iλσ −
√
NBφ1 (1.86)
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Analysis proceeds as follows. First redefine

φ = (φ1, φ2, . . . , φN) = (ϕ, ψ1, . . . , ψN−1) = (ϕ,ψ). (1.87)

It is easy to see that ψ field talks only to the λ field, and can be integrated
out leading to a term, (N − 1) ln det[−∇2 + iλ], resulting in

h[ϕ, σ, λ] = ϕ(−∇2 + iλ)ϕ+NU(σ)− iλσ −
√
NBϕ+N ln det[−∇2 + iλ]

(1.88)
As physicists, we do not notice the difference between N − 1 and N ! Now,
a matter of redefinition is in order. Define,

ϕ =
√
NΦ (1.89)

resulting in

Z =

∫
D[Φ]D[σ]D[λ] e−NH[Φ,σ,λ], H[Φ, σ, λ] =

∫
ddxh[Φ, σ, λ] (1.90)

eqn:LNfin

where

h[Φ, σ, λ] = Φ(−∇2 + iλ)Φ + U(σ)− iλσ −BΦ + ln det[−∇2 + iλ]. (1.91)
eqn:LNh

Lets consolidate – we did two things in going from eqn. (1.83) to eqn. (1.90).
First, the important one, we made φ2 a new field Nσ(x), and second we
replaced N − 1 by N !

Eqn. (1.90) now allows us a very nice starting point for further analysis.
Since N →∞, the path integral will be dominated by its “classical” value,
i. e., where the fields extremize the action H in eqn. (1.90). We look for
classical field that are “constant”, i. e., independent of the arena point x.
This leads to the following “uniform saddle point” equations

2iλΦ = B (1.92)
eqn:PhiSP

−iλ+ U ′(σ) = 0 (1.93)
eqn:sigSP

Φ2 − σ +

∫
ddk

1

k2 + iλ
= 0 (1.94)

eqn:lamSP

Suppose we now let B = 0. Then the eqn. (1.92) says that either Φ =
0 or iλ = 0. To understand what this means, it is best to redefine the
saddle point iλ as m2, i. e., “mass”. One finds that if Φ 6= 0, which means
that we break O(N) symmetry, m2 = 0 necessarily. We see that in the
situation where Φ 6= 0, the ψ fields are gapless! This is a manifestation
of the Goldstone theorem; in a system with continuous symmetry and local
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interactions, breaking of the symmetry will result in a state with gapless
excitations!

To proceed further, we need to study the integral.∫
ddk

1

k2 +m2
(1.95)

This integral is ultraviolet divergent for d − 3 > −1, i. e, for d > 2. Also,
there are infrared problems if d − 3 < −1, i.e., d < 2. We now introduce a
cutoff momentum Λ. We see that

F (Λ,m2) =

∫
|k|<Λ

ddk
1

k2 +m2
=

Kd

d− 2
Λd−2 −m2Kd

∫ Λ

0

dk
kd−3

k2 +m2

≈ Kd

d− 2
Λd−2 −md−2Kdf(d) +

m2Kd

d− 4
Λd−4

(1.96)
eqn:FLambdam

where (the second integral is convergent for d < 4, and for d = 4 has a log
divergence)

f(d) =
π

2 sin π(d−2)
2

. (1.97)

Note that the last term vanishes for d < ∞ for “large” λ. Main point, in
our regime of interest 2 < d < 4, only the first two terms of F (Λ,m2) are
important.

At the critical point, both Φ = 0 and m2 = 0. We get, then that

σc =
1

d− 2
Λd−2 (1.98)

From eqn. (1.93), we get, for special U(x), that

tc + uσc = 0 (1.99)

Since in the broken symmetry phase (m2 = 0),

t+ uσ = 0 (1.100)

whence
tc − t = u(σ − σc) (1.101)

Using eqn. (1.94), we get

Φ =

√
tc − t
u

(1.102)

or
β =

1

2
(1.103)
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In the disordered phase (Φ = 0), we get from eqn. (1.94) using eqn. (1.96)

σc − σ = md−2Kdf(d) (1.104)

or,

m2 = ξ−2 =

(
t− tc

uKdf(d)

) 2
d−2

(1.105)

We thus get

ν =
1

d− 2
(1.106)

which (yippie!) is different from the Landau value, and is dimension de-
pendent. In the disordered phase, the correlator look like

〈φa(x)φb(0)〉 = δab
e−|x|/ξ

|x|d−2
(1.107)

which immediately gives
η = 0 (1.108)

Finally, we see that in the normal phase

χ =
1

2m2
∼ (t− tc)−

2
d−2 (1.109)

or
γ =

2

d− 2
(1.110)

One can easily see that one gets obtains Fisher scaling law eqn. (1.19) okay!
Next, using eqn. (1.17), we find that

α =
d− 4

d− 2
(1.111)

which is also consistent with hyperscaling law eqn. (1.20).
From eqn. (1.91), we can obtain an expression for the saddle point den-

sity as

f = m2(−F (Λ,m)) + U(σ)−BΦ +
Kd

2
Λd−2m2 − Kdf(d)

d
md ∼ (t− tc)

d
d−2

(1.112)
which again gives the value of α, just quoted.

Finally, at t = tc, we get Φ2 = Kdf(d)md−2, 2m2Φ = B, resulting in

Φ
d+2
d−2 ∼ B (1.113)
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implying the critical exponent

δ =
d+ 2

d− 2
(1.114)

One is relieved that Widom eqn. (1.18) has not been left behind.

1.0.2 Techniques: Dimensional Regularization

If you look at certain literature, you will be faced with phrases like “carry-
ing out the RG procedure in the dimensional regularization scheme with
minimal subtraction”, and if you read on you will will be faced with ex-
tremely strange results such as∫ ∞

0

dkkd−1 = 0 (1.115)

and the only reason why you were cowed down was because this is the
Veltman formula. You know better than to disparage a Nobel Prize winner.

Time to pull up our socks and get on with it. We need some revision.
Recall the definition of the gamma function

Γ(z) =

∫ ∞
0

dx e−xxz−1 (1.116)
eqn:Gamma

An important result is
Γ(1) = 1. (1.117)

It is also easy to see that

zΓ(z) = Γ(z + 1) (1.118)

providing the result
Γ(n) = (n− 1)! (1.119)

One sees that the gamma function is the generalization of the notion of
factorials to an arbitrary complex number. The gamma function is posi-
tive for positive arguments of z, and has singularities at all non positive
integers. In fact for any n ≥ 0, we have

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ ψ(n+ 1) +O(ε)

]
(1.120)

eqn:Expn

where
ψ(z) =

Γ′(z)

Γ(z)
(1.121)

eqn:DiGamma
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is the digamma function, which, again, is positive for positive argument.
Another key function to recall is the beta function

B(x, y) =

∫ 1

0

dt tx−1(1− t)y−1 (1.122)

A neat result is that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(1.123)

eqn:Beta

Colloquially, the beta function is the generalization of the combinatorial
nCr function.

Now we will state the all important formula for us∫ ∞
0

dx xa(1 + x2)−b =
1

2
B

(
a+ 1

2
, b−

(
a+ 1

2

))
(1.124)

eqn:Imp

It is not very difficult to prove this from the definitions.
In our calculations, we need∫

ddk
1

(k2 +m2)b
=

2md−2b

(4π)d/2Γ(d/2)

∫ ∞
0

dk kd−1(1 + k2)−b

=
md−2b

(4π)d/2
Γ(b− d

2
)

Γ(b)

(1.125)
eqn:Kint

� (Here ddk includes the factor of 1/(2π)d) Note there are no explicit cut-
offs anywhere. The central idea is that the dimension d has been made an
arbitrary "complex" number. The divergent integrals that we faced earlier
will appear as poles of the gamma function. This trick leads to what is
called as "dimensional regularization". The remarkable thing about this is
that there is no explicit cutoff, and stated in a very field theoretic fashion,
the theory remains Lorentz invariant.

There are some beautiful electrostatic examples for the use of dimen-
sional regularization [?, ?].

Let us work with the O(N) φ4 model,

h[φ] =
1

2
(∇φ)2 +

1

2
m2φ2 +

u

2N
(φ2)2 (1.126)

eqn:ONmodelDR

to learn how dimensional regularization works. Before proceeding, we
introduce a mass scale µ, and write

u = gµ4−d (1.127)
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where g is a dimensionless coupling constant.
At the one loop level the self energy diagrams are

The first one has a “topological factor” (tf) of 4, while the latter 8, leading
to

Σ(1)(k) = −2u
(N + 2)

N

∫
ddk

1

k2 +m2
= −2u(N + 2)

N

md−2

(4π)d/2
Γ

(
1− d

2

)
(1.128)

a term that is k independent. The calculation must agree with observation

m2
observed = m2 +

2gµ4−d(N + 2)

N

md−2

(4π)d/2
Γ

(
1− d

2

)
(1.129)

eqn:BlowUp

but the rhs is divergent in d = 4! Our theory seems to make no sense, is it
nonsense? Let us work near 4 dimensions, d = 4− ε. We get that

m2
obs = m2

(
1 +

2g(N + 2)

N(4π)2

(
4πµ2

m2

) ε
2

Γ
(
−1 +

ε

2

))
(1.130)

With dimensional regularization, we have “controlled” the infinities (i. e.,
we know how to parameterize the infinity). Yet, this leaves a very simple
question – what the frog is going on?
� Write out an elementary introduction to perturbation theory. Turns

out that we have to go back to the drawing board, and revisit quantum
field theory again! Of course, we have set up everything, but not one lit-
tle thing before starting off. Since our fields are O(N) object, they carry
a vector index φa(x). We will, as far as as possible, never explicitly write
these indices anywhere. An interesting thing to calculate is the n-point
correlator

G(n)({xi}) = 〈φ(x1)φ(x2) . . . φ(xn)〉 =

∫
Dφφ(x1)φ(x2) . . . φ(xn) e−

∫
ddxh[φ]∫

Dφ e−
∫

ddxh[φ]

(1.131)
eqn:Gn

The denominator is simply the partition function. We can now expand the
numerator as a perturbation series in u, and that the all terms with vacuum
diagrams multipliying an otherwise connected diagram are cancelled by
the denominator. Lets define things in Fourier space (in a slightly different
fashion than eqn. (??)) as

f(k) =

∫
ddx e−ikxf(x) (1.132)
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and the transform as

f(x) =
1

(2π)d

∫
ddk eikxf(k) (1.133)

We have implicit, the formula∫
ddx e−ikx = (2π)dδ(k). (1.134)

The correlator G(n) in Fourier space looks like

G(n)(k1, . . . , kn) =

∫ n∏
i=1

ddxi e
−i

∑
i kixiG(n)(x1, . . . , xn) (1.135)

In a translationally invariant state, we expect the following structure

G(n)(k1, . . . , kn) = (2π)dδ

(∑
i

ki

)
Ḡ(n)(k1, . . . , kn) (1.136)

Now, focussing, on the connected pieces of Ḡn
c , it is useful to define the

vertex

Γ̄(n)(k1, . . . , k2) =
Ḡ

(n)
c (k1, . . . , kn)

Ḡ(2)(k1,−k1) . . . Ḡ(2)(kn,−kn)
(1.137)

In other words, Γ̄(n) is an irreducible vertex with n external lines, and is
obtained from the connected correlator Ḡ(n)

c by “clipping” the n external
Ḡ(2) lines.

We will need one more set of correlation function, the ones that involve
the so called “composite operators”. We write

G(l,n)(y1, . . . , yl, x1, . . . , xn) =
1

2l
〈φ2(y1) . . . φ2(yl)φ(x1) . . . φ(xn)〉 (1.138)

The Fourier transform of this is naturally defined as

G(l,n)(q1, . . . , ql, k1, . . . , kn) (1.139)

A key result is the following

G(1,n)(q = 0, k1, . . . , kn) = FTxi

[
1

2

∫
ddyG(1,n)(y, x1, . . . , xn)

]
(1.140)

where FT is abbreviation of Fourier transform. A useful result is that

G(1,n)(q = 0, x1, . . . , xn) = − ∂

∂m2
G(n)(x1, . . . , xn) (1.141)
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and

G(1,n)(q = 0, k1, . . . , kn) = − ∂

∂m2
G(n)(k1, . . . , kn) (1.142)

Before we proceed with the analysis, let us recall a few basic facts. For
the theory defined in eqn. (1.126), we have

[[m]] = L−1 = µ1, [[φ(x)]] = L−Dφ = µDφ , [[u]] = Ld−4 = µ4−d (1.143)

where µ is the previously introduced mass scale. The engineering dimen-
sion of the field φ(x) is

Dφ =
d

2
− 1 (1.144)

With this discussion it is immediately clear that

[[G(l,n)(x)]] = L−(2l+n)Dφ = µ(2l+n)Dφ

[[G(l,n)(k)]] = L−(2l+n)Dφ+(l+n)d = µl(2Dφ−d)+n(Dφ−d)
(1.145)

Finally, we note that
[[Γ̄(n)(k)]] = µ−(nDφ−d) (1.146)

eqn:GamDim

One can now write formal perturbation expansion for Γ̄(n) in powers of g.
As we have seen, this will produce infinite results!

Our idea now is extract as much as possible without explicit calcula-
tion. � Citation We first ask, what is the consequence of Wilson’s law
(see above eqn. (1.27)) on the correlation functions. Wilson’s law suggests
that the system has an emergent symmetry. In such cases, the correlation
functions are not all independent – there will be constraints imposed by
the symmetry. Such constraints are generically termed as Ward identi-
ties. An example of this is the Einstein relation connecting the conductiv-
ity with the diffusion constant, a result of particle number conservation.
What conditions does scale invariance or dialatational symmetry impose
on our system?

To investigate this, we first set m = 0 and g = 0 obtaining a free field
theory. Suppose we perform the scale transformation eqn. (1.27), to get
(recall analog of eqn. (1.44))

G(n)(x) = ζ(s)nG(n)
new(xnew) (1.147)

For the free field, we have seen that ζ(s) satisfies eqn. (1.60)

G(n)(x) = s−nDφ‘G(n)
new(xnew) (1.148)
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a result that is true for all s. To make progress, define s = e`, and ask
what happens for infinetisimal `. The ideas that G(n)

new as a function of its
arguments is same as the function G(n) implies that

G(n)({x}) = (1− nDφ`)

(
Gn({x}))− `

∑
i

xi∂xiG
n({x})

)
(1.149)

Scale invariance now gives the Ward identity∑
i

xi∂xiG
(n)(x) + nDφG

n({x}) = 0 (1.150)

In other words, all correlation functions are eigenfunctions of the dilata-
tion operator with an eigenvalue determined by the engineering dimen-
sions. Applying this to G(2)(x1, x2) along with translational symmetry im-
mediately gives G to be a homogeneous function of degree −nDφ and in
fact a power law in the argument

G(2)(x1 − x2) ∼ |x1 − x2|−(D−2) (1.151)

a very well known result. One can immediately obtain from this a k-space
version of the Ward identity as∑

i

ki∂kiG
n({ki}) = (nDφ − nd)Gn({ki}) (1.152)

(This is obtained by noting that FT (x∂xf) = i∂k(FT (∂xf)) = −∂k(kf(k)) =
−k∂kf(k)− df(k)) We can go on to obtain(∑

i

ki∂ki

)
Γ̄(n)({ki}) = (−nDφ + d)Γ̄(n)({ki}) (1.153)

a result that is consistent with dimensional consideration eqn. (1.146). This
is nice since Γ̄2(k,−k) ∼ k2 for the free field.

Okay, what happens if we add a mass term to the theory? Scale in-
variance is clearly broken, but can we be more specific about this? Here is
a nice trick to answer this question. We want to calculate G(n)

new − G(n) to
linear order in `. Suppose we map from x → xnew via eqn. (1.27), where
s = e`. Under this map, an operator O changes from O + `δO, the action
changes from H + `δH . Thus, we get that

δ〈O〉 = ` [〈δO〉 − (〈δH O〉 − 〈δH〉〈O〉)] (1.154)
eqn:deltaO
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Suppose O is
O = φ(x1)φ(x2) . . . φ(xn), (1.155)

then
δO = −(nDφ +

∑
i

xi∂xi)O (1.156)

Also,

δH = −2m2

∫
ddx

1

2
m2φ2(x)︸ ︷︷ ︸

δHm2

−(4− d)u

∫
ddx

1

2
(φ2(x))2︸ ︷︷ ︸

δHu

(1.157)

Now, one can show that

〈δHm2O〉 − 〈δHm2〉〈O〉 =
∂

∂m2
〈O〉

〈δHuO〉 − 〈δHu〉〈O〉 =
∂

∂u
〈O〉

(1.158)

With these developments, we find that for scale invariance,[
−(nDφ +

∑
i

xi∂xi) + 2m2∂m2 + (4− d)u∂u

]
G(n)(x1, . . . , xn) = 0 (1.159)

Noting that m2∂m2 = 1
2
m∂m, we get[(∑

i

xi∂xi

)
−m∂m − (4− d)u∂u

]
G(n)({xi}) = −nDφG

(n)({xi}) (1.160)
eqn:bareWardG

This is the key result, the Ward identity that takes into account scale in-
variance breaking terms.

Lets get a hang of this. What eqn. (1.160) is that

G(n)({sxi}, s−1m, s−(4−d)u) = s−nDφG(n)({xi},m, u) (1.161)

Set u = 0, to see the physics in a free massive system. We see that, choosing
s = m

G(n)({xi},m) = mnDφG(n)({mxi}, 1) = mnDφF ({mxi}) (1.162)

which plainly put is the hardest way yet to do dimensional analysis. Lets
record some more useful results.[

(
∑
i

ki∂ki) +m∂m + (4− d)u∂u

]
G(n)({ki}) = n(Dφ−d)G(n)({ki}) (1.163)
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and[
(
∑
i

ki∂ki) +m∂m + (4− d)u∂u

]
Γ̄(n)({ki}) = (−nDφ + d) Γ̄(n)({ki})

(1.164)
eqn:bareWard

This final formula is our workhorse, the Ward identity for the vertex func-
tion.

For a scale invariant system, one expects eqn. (1.164) to be an exact
result. The key issue, however, is that it is unclear how to interpret this
equation given that Γ̄(n) in the perturbation theory are divergent quantities
as seen, for example, in eqn. (1.129).

The idea now is to define a renormalized theory, that produces finite
vertices. Generically, this entails the following. All coupling constants and
fields in eqn. (1.126) are treated as bare quantities and will be said denoted
by a subscript ◦, i e., the bare field φ◦, bare mass m◦ and the bare coupling
constant u◦, with

h◦[φ◦] =
1

2
(∇φ◦)2 +

1

2
m2
◦φ◦

2 +
u◦
2

(φ◦
2)2 (1.165)

eqn:HamBare

All quantities calculated using this theory, for example Ḡ(n)
◦ and Γ̄

(n)
◦ ({ki})

diverge, in general.
We now regularize all the vertices (at all orders in perturbation the-

ory) by following any of the regularization techniques. For example, we
could introduce an ultraviolet cutoff Λ, or as we will do later, egularize by
dimensional regularization by introducing a mass scale µ. For now, lets
work with the cut off scale. The idea now is to define a set of renormalized
quantities (all quantities without subsript)

φ◦(x) =
√
Zφφ(x)

m◦
2 =

Zm2

Zφ
m2

u◦ =
Zu
Z2
φ

u

(1.166)
eqn:Phi4RC

such that the parametersmo and uo are “divergent” and that the quantities
m2 and u the renormalized mass and coupling constant are finite. This
means that the renormalization parameters must be divergent and may
depend on stuff like Λ (or ε or µ in case of DR). We immediately have that

Γ̄(n)
◦ ({ki}) = Z

−n/2
φ Γ̄(n)({ki};m,u) (1.167)

eqn:RenGam
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Now it strikes! The Ward identity eqn. (1.164) cannot “be correct” as there
the ultraviolet scale hidden in plain sight! In other words, the Ward iden-
tity contains an anomaly. For example, with the cutoff regularization, we
have to have[

(
∑
i

ki∂ki) +m◦∂m◦ + (4− d)u◦∂u◦ + Λ∂Λ

]
Γ̄(n)
◦ ({ki}) = (−nDφ + d) Γ̄(n)

◦ ({ki})

(1.168)
eqn:bareWardAnom

However, the physical vertex will (should) not have an anomaly! How is
this rescued? What happens is that mass dimension of the field changes
from Dφ to ∆φ such that[

(
∑
i

ki∂ki) +m∂m + (4− d)u∂u

]
Γ̄(n)({ki}) = (−n∆φ + d) Γ̄(n)({ki})

(1.169)
In other words the apparent anomaly in the Ward identity is “cured” by
the field picking up an anomalous dimension even while keeping all quan-
tities finite.

This is the overall idea.
Now the key point is that the Zs are function of the renormalized pa-

rameters m, u and Λ (µ and ε in case of DR). Here is what happens, as
m → 0, we find that the renormalized dimensionless coupling constant g
goes to a finite value g?, and Zs start to show powerlaw behaviour. For
example, in this limit,

Γ̄(2)
◦ (k) ≈

(
Λ

m

)η
Γ̄(2)(k)

m◦
2 ≈

(
Λ

m

)∆m2

m2

u◦ ≈
(

Λ

m

)ηu+(4−d)

u

(1.170)

where the numbers η,∆m2 , ηu are determined by the dimensionless con-
stant g?. This is how universal behaviour (independent of ultraviolet de-
tails) emerges.

Time to get the big picture. Idea is that any field theory has infinities.
The question is can we “handle” the infinities. It is possible in certain field
theories called as renormalizable theories. In these theories the infinities
can be traced just a few qauntum processes (so called primitive divergences),
and in fact, infinities that occur in any quantum process can be traced to
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these primitive divergences. At any order of perturbation theory, we can
get rid of these primitive divergences by defining a renormalized field the-
ory redefining the field and some coupling constants (for the φ4, these are
shown in eqn. (1.166)). These then allow us to see how anomalous dimen-
sions can emerge out of eqn. (1.168).

Suppose we go through this process, how can we obtain information,
for example, the critical exponents? We will discuss the final outcome in
terms of the dimensional regularized minimal subtraction (MS) scheme of
’tHooft and Veltman. Do not yet worry about what MS actually means,
we do not need to understand that now. The central notion is that the bare
(divergent) vertex functions Γ̄n◦ depend on m◦, u◦ and ε = 4 − d. The fi-
nite renormalized functions, on the other hand, depend on renormalized
parameters m, u, ε and, most importantly on the renormalization scale µ. We
express the renormalized interaction via µ = gµε here g is the dimension-
less renormalized coupling constant. The state of affairs is summarized in
the equation, which is an explicit restatement of eqn. (1.171)) for the MS
scheme

Γ̄(n)
◦ ({ki};m◦, u◦, ε) = Z

−n/2
φ Γ̄(n)({ki};m, g, µ, ε) (1.171)

eqn:RenGam

In general, Zs, such as those defined in eqn. (1.166), depend on all on
m, g, µ, ε. Suppose we change µ, what happens? Well, first, we observe
that the bare quantities should not change! This means that the right hand
side of eqn. (1.171) must satisfy the following differential equation (for a
fixed ε)[
µ∂µ + (µ∂µm)∂m + (µ∂µg)∂g − n(µ∂µ log(

√
Zφ))

]
Γ̄(n)({ki};m, g, µ, ε) = 0

(1.172)
called the renormalization group equation. It is conventional to define the
renormalization group flow equations as

γ(m, g, µ, ε) = µ∂µ log(
√
Zφ) (1.173)

eqn:Zbeta

γm(m, g, µ, ε) =
1

m
µ∂µm (1.174)

eqn:mbeta

β(m, g, µ, ε) = µ∂µg (1.175)
eqn:gbeta

so that maximum confusion can be created with the critical exponents!
No the γ and β here are NOT the critical exponents γ and β. These are
very similar in spirit to Wilson’s idea of what happens when a scale is
changed, for example suppose we define µ(s) = µs−1, then all µ∂µ →
−s∂s, and we get the RG flow equations! We see that this the program
of renormalized field theory is simply a different way of doing the “in-
tegrate/rescale/renormalize” procedure of Wilson all in one shot. Once
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we have the RG equations, we are in business. We can find fixed points
and obtain the critical exponents by linearizing the RG equations about
the interesting fixed point. Fantastic, isn’t it?

Actually, MS is even more fantastic. Quite amazingly, we will find that
the Zs are independent of m and µ, but depend only on g and ε! Who
says miracles are not possible? In the MS scheme, the RG flow equations
simplify quite a bit in that the lhs quantities in eqn. (1.173), eqn. (1.174)
and eqn. (1.175) are functions of g and ε alone, leading to

[µ∂µ + γm(g, ε)m∂m + β(g, ε)∂g − nγ(g, ε))] Γ̄(n)({ki};m, g, µ, ε) = 0
(1.176)

eqn:MSRG

Further, we see that fixed point equation

β(g, ε) = 0 (1.177)

will lead to a dimensionless fixed point coupling g?. It is quite clear now
that everything near g? is determined by value of g?, and in particular, the
critical exponents! One sees how the universality arises fairly easily in the
MS scheme.

It is also good to get a slightly different perspective. Eqns. eqn. (1.173),
eqn. (1.174) and eqn. (1.175), and be interpreted differently, as done by
field theory folks. They describe the scale µ dependence of coupling con-
stants, i. e., flowing coupling constants as they say. For example if g → 0 as
µ→∞, the theory would be called asymptotically free!

We have pushed as far as we can with our philosophy. Now we need
to get down to doing some calculations to illustrate these ideas, and elab-
orate on the advertised fantastic properties of the MS scheme. Before we
get down to the calculations, let us get a general overview of when a renor-
malization procedure such as that envisaged in eqn. (1.166) is possible. For
this purpose, we consider a more general theory where the φ4 interaction
is replaced by a φp interaction. We start by asking if an arbitrary diagram
F contributing to Γ̄

(n)
◦ has divergences. Clearly such a diagram will have

n external legs. Let us suppose that there are v interaction vertices. Then
the number of internal lines I is given by

I =
1

2
(vp− n). (1.178)

Leading to a total number of I+n lines, i. e., I+nmomenta. How many of
these are independent? Well the n external lines already have independent
momenta with (one constraint of total momentum conservation). For the v
vertices, we have v− 1 independent momentum constrants (the −1 comes
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from total momentum conservatoin of external lines). Thus the number
independent momenta, i. e., loops of the diagram is equal to

L = (I + n)− (n+ v − 1) = I − (v − 1). (1.179)

One immediately sees that these independent momenta will be integrated
over to get the value of the diagram. Taking the usual form of the kinetic
energy and mass term in d dimensions we obtain the mass dimension of
the diagram F (only the integration part, without the strength of the inter-
action vertices) as

∆(F ) = dL− 2I = (d− 2)

[
(pv − n)

2

]
− d(v − 1) (1.180)

A diagram with ∆(F ) > 0 is called “divergent”, while if ∆(F ) < 0, it
is scalled “superficially convergent”. If ∆(F ) = 0 then there is a log be-
haviour (“marginal”). A superficially convergent digram can have sub-
divergences. If the theory has only a few diagrams that are truly “diver-
gent”, one can construct a renormalizable theory. � Elaborate on this
discussing subdivergences. For φ4 theory in d = 4, one can show that

∆(F ) = 4− n (1.181)

and that there are only three diagrams that are truly divergent. In other
words, if we “take care” of these, we are done. These diagrams are

Bubble (B)Tadpole (T ) Sunrise (S)

and if fact it can be shown that all divergences in φ4/d = 4 arise from these
diagrams.

The determination of Zs proceeds via a renormalized perturbation theory.
One formally starts with

h[φ] =
1

2
(∇φ)2 +

1

2
m2φ2 +

gµε

4!
(φ2)2 +

Qφ

2
(∇φ)2 +

Qmm
2

2
φ2 +

Qggµ
ε

4!
(φ2)2

(1.182)
eqn:RenHam

where the terms with Q are called the counterterms, which are calculated
at any order of perturbation theory to keep all Γ̄(n) finite up to that order of
perturbation. Evidently, as one goes to higher order in perturbation theory,
Qs will accumulate higher powers of g.
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A close look shows that this is simply a recasting of the bare theory.
For, define

Zφ = (1 +Qφ)

Zm = (1 +Qm)

Zg = (1 +Qg)

(1.183)

and after some minor algebra one sees that h[φ] = h◦[φ◦].
Now on to the calculation ofQs. At one loop level, we need to consider

only the tadpole and the bubble. After some damage to the rain forest, we
find

T = m2 g

(4π)2

[
2

ε
+ log

(
4πµ2

m2

)
+ ψ(2) +O(ε)

]
(1.184)

B = u
g

(4π)2

[
2

ε
+

∫ 1

0

dt log

(
4πµ2

m2 + t(1− t)q2

)
+ ψ(1) +O(ε)

]
(1.185)

(q in B is the “momentum flowing” through the bubble; what happens at
q = 0 is the key object of interest for us). Now we introduce the minimal
subtraction scheme to calculate the counterterms. This involves, removing
only the ε pole terms after taking in the contribution of T and B (this in-
volves multiplying T and B by appropriate factors including topological
and expansion factorials) to Γ̄(2) and Γ̄(4) respectively. Some algebra gives
(result quoted are for N = 1)

Z
(1−loop)
φ = 1 (1.186)

Z(1−loop)
m = 1 +

g

(4π)2

1

ε
(1.187)

Z(1−loop)
g = 1 +

3g

(4π)2

1

ε
(1.188)

Even at the one loop level, we see some really nice things. For example,
the β function is

µ∂µg|(1−loop) = −εg +
3g2

(4π)2
(1.189)

eqn:Beta1loop

from which we immediately obtain the non-trivial Wilson-Fisher fixed
point g? = (4π)2

3
ε. � Discuss two loop focussing on 0) How subdiver-

gences give to higher poles of ε 1) S, overlapping divergences giving
“log” terms, nontrival Qφ I will quote here the results of the two loop cal-
culations (please note that I have not obtained all terms of this by myself,
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I am quoting from the literature)

Z
(2−loop)
φ = 1− 1

12

(
g

(4π)2

)2
1

ε
(1.190)

Z(2−loop)
m = 1 +

[
g

(4π)2
− 1

2

(
g

(4π)2

)2
]

1

ε
+ 2

(
g

(4π)2

)2
1

ε2
(1.191)

Z(2−loop)
g = 1 + 3

[
g

(4π)2
−
(

g

(4π)2

)2
]

1

ε
+ 9

(
g

(4π)2

)2
1

ε2
(1.192)

We can now summarize the results of the renormalized perturbation
theory, that redeems the promise of the magic of the MS scheme made
near eqn. (1.176). Suppose we calculate up to L loops, then we find,

Zφ = 1 +

L(∞)∑
l=1

Aφ,l(g)

εl
(1.193)

eqn:ZphiSeries

Zm = 1 +

L(∞)∑
l=1

Am,l(g)

εl
(1.194)

eqn:ZmSeries

Zg = 1 +

L(∞)∑
l=1

Ag,l(g)

εl
(1.195)

eqn:ZgSeries

where all Als is a polynomial in g of order L, as is immediately evident
from our one loop and two loop results. Indeed, if we could calculate to
all orders4 as indicated by∞ in brackets, and the Als then are power series.

We are now in more happy territory of generalities! Once we have the
Zs, we can calculate the flow equations. The MS magic, provides great
simplification here, because in MS, Zs depends only on g and ε leading to

γ(g, ε) =
β(g, ε)

2

Z ′φ
Zφ

(1.196)
eqn:phiZp

γm(g, ε) = −β(g, ε)

2

Z ′m
Zm

+ γ(g, ε) (1.197)
eqn:mZp

((gZg)
′Zφ − 2(gZg)Z

′
φ)β(g, ε) = −ε(gZg)Zφ (1.198)

eqn:gZp

where ()′ = d
dg

. The last equation eqn. (1.198) proves to be a crack in a dark
room, which we can pry open! Noting that eqn. (1.193) etc., have only

4Assuming an infinite supply of live graduate students.
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inverse powers of ε, we are able to infer that β(g, ε) must be a linear poly-
nomial in ε! In an equation, β(g, ε) = b0(g) + b1(g)ε, and can be explicitly
computed as

β(g, ε) = −g︸︷︷︸
b1(g)

ε+ g2(A′g,1 − 2A′φ,1)︸ ︷︷ ︸
b0(g)

. (1.199)
eqn:betagfin

We can futher obtain,

γ(g, ε) = −1

2
gA′φ,1 (1.200)

eqn:betaphifin

γm(g, ε) =
1

2
g
(
A′m,1 − A′φ,1

)
(1.201)

eqn:betamfin

This analysis also puts many constraints on Als. The truly breathtaking
and remarkable result is that only the terms associated with the simple
poles of Zs appear in the RG flow equations eqn. (1.199), eqn. (1.200) and
eqn. (??), and they do not have any singular behaviour when ε → 0. This
is it! We now know how our system “changes” as we change scales. By
imposing the vanishing of the β-function, we can find the fixed points and
study the physics close to them. Let us do just that.

To be with condensed matter folks, we need to run towards the in-
frared. For this purpose, identify µ to be a base scale and write

µ(s) = s−1µ (1.202)

which is the the “inverse” version of the eqn. (1.27). We this find, writing
s = e`

s∂sg =
dg

d`
= −β(g) (1.203)

eqn:gWilson

s∂sm̄
2 =

dm̄2

d`
= 2(1− γm(g))m̄2 (1.204)

eqn:m2Wilson

where we have, following our Wilsonian infrared pursuit, defined m =
m̄µ, m̄ is the dimensionless mass. Dependence of β and γ on ε will not be
explicitly shown here are hence forth. Solving the two equations, we get

s = e−
∫ g(w)
g(1)

dw 1
β(g(w)) (1.205)

eqn:gsol

which is used to obtain g(s). Once we have this we can obtain

m̄2(s) = m̄2(1)e
∫ s
1

dw
w

2[1−γm(g(w))]. (1.206)
eqn:msol



41

We can also solve eqn. (1.176) (by noting that µ∂µ +γmm∂m +β∂g ≡ −s d
ds

)
as

Γ̄(n)
(
{ki};m(s), g(s), µs−1

)
=
[
e−n

∫ s
1

dw
w

γ(g(w))
]

Γ̄(n) ({ki};m(1), g(1), µ)

(1.207)
eqn:Gamsol

These last three equations above have everything we need to obtain the
critical physics.

Lets first obtain the fixed points. Set the rhs of eqn. (1.203) and eqn. (1.204)
to zero, to obtain

β(g?) = 0 (1.208)
m̄? = 0 (1.209)

At the critical point γ and γm take on values γ? and γ?m calculated by stick-
ing g? into eqns. (1.200) and (1.201). It is clear that there are two fixed
points: the Gaussian fixed point, and the Wilson-Fisher fixed point. At the
Gaussian fixed point

g?G = 0, m̄2?
G = 0,γ?G = 0,γ?mG = 0 (1.210)

On the other hand at the Wilson-Fisher fixed point

g?WF =
(4π)2

3
ε+ ..., m̄2?

WF = 0,γ?WF ∼ ε2,γ?mWF ∼ ε (1.211)

We will only dicuss the WF fixed point, and hence drop all the WF suf-
fixes. Suppose we are close the the critical point, i e., start with g = g? + δg
and a small m̄2 6= 0, then the flow will take it to

δg(s) = δgs−ω
?

m̄2(s) = m̄2s2(1−γ?m)
(1.212)

where

ω? =
dβ

dg

∣∣∣∣
g=g?

(1.213)

For the WF fixed point, to one loop order, ω? ≈ ε. This means δg flows to
zero under RG, where as m̄ grows.

To connect to the Landauesque language to obtain critical exponents
etc., we need a parameter analogous to t as defined in eqn. (1.10). Given
that what we have control on in our calculation is µ, or in other words, s,
we have to hunt down what to call t. We start this pursuit by noting that
we should be close to a fixed point for t to have a meaning. That m̄2? = 0
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makes a lot of sense as we expect the system to be gapless. Yes, this is
true, but m2 is not the true gap in the system, but a quantity that scales
monotonically with the true gap, i. e., when m̄2 → 0 the gap in the system
also goes to zero. Suppose, we start close to the critical point; then it is
natural to call

m̄2(s = 1) = t (1.214)

In this set up, when is t = 1? It natural to ascribe t = 1 when the m scale is
µ, i.e., when m̄ = 1. At what value of s, call it sm, does this happen? From
eqn. (1.206), and assuming being very close to the critical point, we get

1 = ts2(1−γ?m)
m =⇒ sm = t

− 1
2(1−γ?m) (1.215)

eqn:sm

Now we will use properties of vertex function to obtain the how the in-
verse correlation length scales with t. First recall eqn. (1.146). It is evident
from dimensional analysis that (note that we have changed m to m̄, no
issue there)

Γ̄n({ki}, m̄, g, µ) = λ(nDφ−d)Γ̄n({λki}, m̄, g, λµ) (1.216)
eqn:LamScale

for any scale factor λ. Noting that for t → 0, sm → ∞ from eqn. (1.215),
and using eqn. (1.207), we get

Γ̄(n) ({ki}; m̄(1), g(1), µ) = snγ
?

m Γ̄(n)
(
{ki}; m̄(sm), g(sm), µs−1

m

)
(1.217)

We now use eqn. (1.216) with λ = µ−1sm in the rhs of the above equation
to obtain

Γ̄(n) ({ki}; m̄(1), g(1), µ) = µ−(nDφ−d)s
(nDφ−d)+nγ?

m Γ̄(n)

(
{smki
µ
}; 1, g?, 1

)
(1.218)

Looking at n = 2, we find

Γ̄(2) ({k}; m̄(1), g(1), µ) = µ2s−(2−2γ?)
m f(

smk

µ
) (1.219)

leading immediately to the correlation length

ξ(t) = µ−1sm = µ t
− 1

2(1−γ?m) (1.220)
eqn:Gam2Sol

immediately providing the critical exponent

ν =
1

2(1− γ?m)
(1.221)
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Now what can we say about the dimensionless function f(smk)? Well, as
t → 0, sm → ∞. If Γ̄(2) to be nontrivial (which it must be), we must have
that

f(x) ∼ x2−2γ? , (1.222)

leading to critical two point vertex as

Γ̄(2)?(k) ∼ µ2γ?|k|2−2γ?‘ (1.223)

which gives

G(2)?(x) ∼ 1

|x|d−2+2γ?
(1.224)

resulting in another result for a the critical exponent

η = 2γ? (1.225)

Finally we see the emergence of the anomalous dimension ( ε2 at the 2-loop
level)at the critical point!
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2

Nonlinear σ Models

A very useful model for the field theoretical study of many problems in
condensed matter physics is the nonlinear σ model (NLσM). NLσMs have
proved useful in the study of magnetism, disordered systems, and even
in the definition of topological phases (more about this later). The simplest
avatar of this model is the, so called O(N) NLσM, where the field is an
N component unit vector, i. e., the field at every point on the arena lives
on the surface of a sphere. The notion of “sphere” can be generalized to
any symmetric space of Cartan and indeed this is what makes them useful
in the description of disordered fermions and in the characterization of
topological insulators.

Much of what we will discuss is inspired by PolyakovBook[?], and a
seminal paper by Brezin-Zinn-JustinPRB1976[?].

Consider a d-cubic lattice with sites labelled by i (lattice spacing a)
which host N -component vectors ni at each site. The vector ni satisfies

ni · ni = 1 (2.1)
eqn:Constraint

One can write a model (Heisenberg ferromagnet) that has a global O(N)
symmetry as

H = −J
∑
〈ij〉

ni · nj (2.2)

The partition function at temperature T can be written as

Z =

∫ ∏
i

dni
∏
i

δ(ni · ni − 1)e
J
T

∑
〈ij〉 ni·nj (2.3)

One can see the ground state will prefer to have all ni equal, and this state
breaks the O(N) symmetry. On the other hand at T → ∞, any configura-

45
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tion is equally likely and this state is O(N) symmetric. The question is if
there is phase transition in going from T = 0 to T =∞.

Our next step is to make this into a “field theory”. We will do this by
staying at low temperatures. we write

ni ≡ (ni1, ni2, . . . , niN) ≡ (σi,πi) (2.4)
eqn:pidefn

where πi is a vector with (N − 1) components. Obviously,

σ2
i + πi · πi = 1 (2.5)

eqn:constr

We can now use this last condition to eliminate σi leadding to

Z =

∫ ∏
i

dπie
J
T

∑
〈ij〉 ni·nj−

1
2

ln(1−πi·πi) (2.6)

Now use the identity

ni · nj = −1

2
(nj − ni)2 + 1 (2.7)

and dump the constant. One then gets the following field theory

Z =

∫
D[π]e−S[π] (2.8)

where

S[π] =
1

2g◦

∫
ddx(∇n)2 − a−d

2

∫
ddx ln(1− π2)

=
1

2g◦

∫
ddx

[
(∇π)2 + (∇

√
1− π2)2

]
+
a−d

2

∫
ddx ln(1− π2)

(2.9)
eqn:Spi

Here
g◦ =

T

J
ad−2. (2.10)

It is standard to express

S[n] =
1

2g0

∫
ddx(∇n)2 (2.11)

with the constraint of unit n being understood.
First let us introduce a momentum scale µ. We see that

[[g◦]] = µ2−d (2.12)
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Thus the coupling constant g◦ is dimensionless in d = 2.
Anticipating some future developments, we introduce a bare external

field b◦ which couples to σ◦ and write the bare action

S◦[π◦] =
1

2g◦

∫
ddx

[
(∇π◦)2 + (∇

√
1− π◦2)2

]
+
a−d

2

∫
ddx ln(1− π◦2)

− 2b◦
2g◦

∫
ddx
√

1− π◦2

(2.13)
eqn:NLSbare

We see that
[[b◦]] = µ2 (2.14)

That this theory is renormalizable is very interesting and curious.� Dis-
cuss renormalizability etc. Now we introduce renormalized fields

(σ◦,π◦) = (
√
Znσ,

√
Znπ) (2.15)

Note that the renormalized fields satisfy,

σ2 + π2 =
1

Zn
(2.16)

leading to √
Znσ =

√
1− Znπ2 (2.17)

We now write out the renormalized action

S[π] =
1

2Zgg

∫
ddx

[
Zn(∇π)2 + (∇

√
1− Znπ2)2

]
+
a−d

2

∫
ddx ln(1− Znπ2)

− 2b

2g

∫
ddxσ(x)

(2.18)

which can be massaged into the following form

S[π] =
1

2Zgg

∫
ddx

[(
Zn(∇π)2 + (∇

√
1− Znπ2)2

)
− 2Zgb√

Zn

√
1− Znπ2

]
+
a−d

2

∫
ddx ln(1− Znπ2)

(2.19)
eqn:NLSren

Here we have renormalized the coupling constant and the magnetic field
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g◦ = Zgg (2.20)

b◦ =
Zgb√
Zn

(2.21)

For small g, we note that

〈π2〉 ∼ g◦ (2.22)

So one might readily expand the nonlinear functions in eqn. (2.9) in pow-
ers. This is achieved by using

√
1− x = 1− 1

2
x− 1

8
x2 + . . . , ln(1− x) = −x− x2

2
− x3

3
− . . . (2.23)

eqn:expns

Now we perform the following tricks: First, note

Zg = 1 +Qg;Zn = 1 +Qn;
Zn
Zg

= 1 +Q (2.24)
eqn:NLSQdef

Using the expansions eqn. (2.23), we express

S[π] =
1

2g

∫
ddx

[(
Zn
Zg

(∇π)2 +
Z2
n

4Zg
(∇π2)2

)
+ b
√
Znπ

2 + b
Z

3/2
n

4
(π2)2

]

+
a−d

2

∫
ddx ln(1− Znπ2)

(2.25)

We will use dimensional regularization to renormalize the theory. First, a
bit of a shocker. The term a−d can be dropped! This is because

a−d ∼
∫

ddk = 0 ! (2.26)

No, the "!" does not stand for factorial, it is an exclamation! To evaluate
the renormalization factors, we go to k space. Now assume g is small, we
expectQs in eqn. (2.24)to be small as well, giving for example,Q = Qn−Qg

etc., to get

S[π] =
1

2g

∫
ddx

[
(∇π)2 + bπ2 +

1

4

(
(∇π2)2 + b(π2)2

)]
+

1

2g

∫
ddx

[
Q(∇π)2 +

Qn

2
bπ2 +

Qn +Q

4
(∇π2) + b

3Qn

8
(π2)2

]
(2.27)



49

The idea is the usual one of renormalized perturbation theory; Qs are se-
lected so as to provide counterterms so that all correlators are rendered
finite at for any given number of loops considered.

We have to go to momentum space for ease in the calculation. We get

S[π] =
1

2g

[∑
k

(k2 + b)πi(k)πi(−k)

+
1

4V

∑
k,k1,k2

(k2 + b)πi(k − k1)πi(k1)πi(−k − k2)πi(k2)

]

+
1

2g

[∑
k

(Qk2 +
Qn

2
b)πi(k)πi(−k)

+
1

4V

∑
k,k1,k2

(
(Qn +Q)k2 +

3Qn

2
b

)
πi(k − k1)πi(k1)πi(−k − k2)πi(k2)

]
(2.28)

V is the d-volume of the system with periodic boundary conditions.
From this we can compute the one loop vertex

Γ(2)(k) =
1

g
(k2 + b) +

[
1

8gV

∑
k′

(
4(N − 1)b

g

(k′)2 + b
+ 8((k′)2 + b)

g

(k′ − k)2 + b

)]

+
1

g

(
Qk2 +

Qn

2
b

)
(2.29)

Now we use that fact that

1

V

∑
k′

(
4(N − 1)b

g

(k′)2 + b
+ 8((k′)2 + b)

)
=

8g

(2π)d

∫
ddk′

(
1

2
(N − 1)

b

(k′)2 + b
+

((k′ + k)2 + b)

(k′)2 + b

)
=

8g

(2π)d

∫
ddk′

(
1

2
(N − 1)

b

(k′)2 + b
+

k2

(k′)2 + b
+ 1

)
=︸︷︷︸
DR

8g

(
1

2
(N − 1)b+ k2

)
1

(2π)d

∫
ddk′

1

(k′)2 + b

=︸︷︷︸
using eqn. (1.125)

8g

(
1

2
(N − 1)b+ k2

)
µε

4π

(
b

4πµ2

)ε/2
Γ(− ε

2
)

(2.30)
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where we have introduced
d = 2 + ε. (2.31)

Now using eqn. (1.120), we get

1

V

∑
k′

(
4(N − 1)b

g

(k′)2 + b
+ 8((k′)2 + b)

)
= 8g

(
1

2
(N − 1)b+ k2

)
µε

4π

(
1 +

ε

2
ln

(
b

4πµ2

)
+ . . .

)(
−2

ε
+ ψ(1) + . . .

)
= 8g

(
1

2
(N − 1)b+ k2

)
µε

4π

(
−2

ε
+ ψ(1)− ln

(
b

4πµ2

)
+ . . .

)
(2.32)

With these developments, we see that

Γ(2)(k) =
1

g
(k2 + b) + (

1

2
(N − 1)b+ k2)

µε

4π

(
ψ(1)− ln

(
b

4πµ2

))
+ k2

(
Q

g
− µε

2π

1

ε

)
+ b

(
Qn

2g
− 1

2
(N − 1)

µε

2π

1

ε

) (2.33)
eqn:NLSrenG2

We get the one loop counter terms as

Qn = (N − 1)
gµε

2πε

Q = Qn −Qg =
gµε

2π

1

ε
=⇒ Qg = (N − 2)

gµε

2πε

(2.34)

Now define
g = gµ−ε, (2.35)

leading to
Zg = (1 + (N − 2)

g

2πε
) (2.36)

and
g◦ = Zggµ

−ε (2.37)

from which we can obtain the β function.

g◦ =

(
g +

(N − 2)

2πε
g2

)
µ−ε (2.38)

This leads to

−ε
(

g +
(N − 2)

2πε
g2

)
+ µ∂µg

(
1 +

(N − 2)

πε
g

)
= 0 (2.39)
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from which we get

µ∂µg = β(g, ε) = εg − N − 2

2π
g2 (2.40)

eqn:NLSUVflow

Before we discuss the physics of this flow, we discuss a bit the reason for
the introduction of the external magnetic field in the calculation. Look
at eqn. (2.33); we see that the renormalized vertex diverges when b → 0!
This is physics, not an artifact. The issue here is that the integrals are also
infrared divergent due to being close to the lower critical dimension. Intro-
ducing a magnetic field allows us to control these infrared divergences.

First of all, let us assume our true identity as condensed matter folks
and write IR flows. This gives

dg

d`
= −µ∂µg = −εg +

N − 2

2π
g2 (2.41)

eqn:NLSUVflow

We see that there are two� three? fixed points. First,

g0 = 0 (2.42)

This is an infrared stable fixed point corresponding to the broken symme-
try ground state. Second,

gc =
2πε

N − 2
(2.43)

which is finite for d > 2 and N > 2! This is an IR unstable fixed point with

dδg

d`
= εδg (2.44)

and corresponds to the critical point separating the ordered and disor-
dered phase. Note that in d = 2 this fixed point is same as the g0 fixed
point. This is simply a statement of Mermin-Wagner theorem that one can-
not break a continuous symmetry with short ranged interactions in d ≤ 2.

We further remark that N = 2 (O(2) symmetry) seems special. At one
loop level, in d = 2, there is no flow for g! We will revisit this case in the
next chapter.

Let us extract a bit more physics at gc. Preparations first. Let at the
m-point correalator

G(m)(x1, . . . , xm) = 〈na1(x1) . . . nam(xm)〉 (2.45)

where ai are the components. Note that

[[G(m)]] = µ0 (2.46)
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The momentum space version of this is

G(m)(k1, . . . , km) = 〈na1(k1) . . . nam(km)〉 (2.47)

and has dimensions
[[Gm({ki})]] = µ−md (2.48)

Owing to the expected translational symmetry of the states, we have

G(m)(k1, . . . , km) = δ(k1 + k2 + . . .+ km)Ḡ(m)({ki}) (2.49)

with
[[Ḡ(m)({ki})]] = µ−(m−1)d (2.50)

It is these barred quantities that we will be analyzing.
The bare quantity is related to the renormalized quantity via

Ḡ(m)
◦ ({ki}, g◦, b◦) = Zn/2

n Ḡ(m)({ki}, g, b, µ) (2.51)

where we have used b = bµ2. We can now write a RG equation

µ
dZ

m/2
n

dµ
Ḡ(m) + Zm/2

n µ
dḠ(m)

dµ
= 0 (2.52)

Define
γn = β(g)

1

2

Z ′(g)

Z(g)
(2.53)

to get

−µdḠ(m)

dµ
= γnḠ

(m) (2.54)

Using our usual definition
µ(s) =

µ

s
(2.55)

we get

s
dḠ(m)

ds
= γnḠ

(m) (2.56)

which can be solved as

Ḡ(m)({ki}, g(s), b(s), µ/s) = em
∫ s
1

dw
w
γn(g(w))Ḡ(m)({ki}, g(1), b(1), µ) (2.57)

eqn:NLSGRG

where g(s) etc., can be solved using their respective β-functions.
First, let us look at the mass or inverse correlation length ξ−1. Since

there is but a single scale g in the problem (when b = 0), we expect

ξ−1 = µζ(g) (2.58)



53

Given that for a given bare parameter, this relationship should be µ inde-
pendent means that

ζ + β(g)
dζ

dg
= 0 (2.59)

We know from the scale invariance of the citical point that ζ(gc) = 0. Inte-
grating this equation about g = gc, we get (δg = g − gc)

dζ

ζ
= − dg

β(g)
= − 1

β′(gc)

dδg

δg
=

1

ε

dδg

δg
(2.60)

where we have used
β′(gc) = −ε (2.61)

We get that
ζ ∼ (g − gc)

1/ε. (2.62)

or
ξ ∼ µ−1(g − gc)

−1/ε (2.63)

leading to

ν =
1

ε
(2.64)

To obtain further results near gc, we note

ds

s
= − dg

β(g)
=

1

ε

dδg

δg
(2.65)

or,
δg ∼ sε (2.66)

we run s→ 0 to reach the critical point. Further, a simple calculation gives

γn(gc) ≈
(N − 1)ε

2(N − 2)
(2.67)

Look at the order parameter which is 〈σ(x)〉; we can apply eqn. (2.57)
with m = 1. Here

Ḡ(1)(ki, g, b, µ) = Ḡ(1)(g, b) (2.68)

as Ḡ(1) is dimensionless. Working at b = 0,

Ḡ(m)(g(s)) = sγn(gc)Ḡ(m)(g(1)) (2.69)

We can write g(s) = gc + δg which means

〈σ〉(δg) = Ḡ(m)(g(1))(|δg|) γn(gc)
ε (2.70)
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whence we get the critical exponent

β =
N − 1

2(N − 2)
. (2.71)

Let us now look at the two point function Ḡ(2)(k, g, b, µ). Since

[[Ḡ(2)]] = µ−d (2.72)

From eqn. (2.57), we get

Ḡ(2)(k, g(1), b(1), µ) = s−2γn(gc)Ḡ(2)(k, g(s), b(s), µ/s) (2.73)

We can rewrite this (for b = 0) as

Ḡ(2)(k, g(1), 0, µ) = s−2γn(gc)
(µ
s

)−d
F (sk/µ, g(s)) (2.74)

as s→ 0, g→ gc with

F (sk/µ, gc) = f(
sk

µ
) (2.75)

Thus,

Ḡ(2)(k, g(1), 0, µ) = s−2γn(gc) = µ−dsd−2γn(gc)f(
sk

µ
) (2.76)

To get a finite answer,
f(x) = x−(d−2γn(gc)) (2.77)

leading to

Ḡ(2)(k, g(1), 0, µ) =
µ−2γn(gc)

kd−2γn(gc)
=

µ−2γn(gc)

k2+ε−2γn(gc)
(2.78)

leading to
η = −ε+ 2γn(gc) =

ε

(N − 2)
(2.79)

to one loop order.

2.1 Poor man’s (Polyakov’s) Approach

Although, the field theoretic method worked out in the last section gives
us all that we need, it is still very instructive to see Polyakov’s original
approach to this problem.1

1Polyakov himself seems to attribute this trick to Berezinskii� check this
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The RG equation is derived by a Wilson method, employing some very
clever tricks. The deep connections between NLσMs and other problems
become evident in the process. Start with

S[n] =
1

2g

∫
ddx ∂αn · ∂αn (2.80)

Note that we do not use the “bare field” as there is an explicit momentum
cutoff Λ already given (precisely as Wilson would want it). Here α runs
over the spatial indices of the d-dimensional Eucledian space.

The idea now is the choose a smaller momentum scale Λ̃ related by
a scale factor s to the original cutoff scale Λ and follow Wilson’s three
step procedure given near eqn. (1.42). Now, this is done in a very clever
fashion. First, we identify the field configurations that are “slow”, i. e., do
not have wave vector components > Λ̃, we will call such a field σ(x) (do
not confuse with the σ(x) defined in the last section). In addition there is
a fast piece π(x), which has only wavevectors between Λ̃ and Λ. The main
idea is the

σ(x) · σ(x) = 1 (2.81)

i. e., σ is a unit vector everywhere. Now, n(x) is also a unit vector, which
means

n(x) =
√

1− π · πσ(x) + π(x) (2.82)

We shall denote π ·π = π2. Now, define a local frame (basis in the n space)
such that

e0(x) = σ(x), ea, a = 1, . . . , N − 1 (2.83)

such that
ea · e0 = 0; ea · eb = δab (2.84)

We shall use the summation convention on the latin indices like a and b,
and also on the spatial indices like α. We now need ∂αn. To obtain this in
a nice fashion, we do some ground work. First, notice

e0(x) · e0(x) = 1 =⇒ ∂αe0 = Aa0
α ea ≡ A0

α (2.85)
eqn:NLSM:doue0

Also,
e0(x) · ea(x) = 0 =⇒ e0 · ∂αea = −A0

α · ea (2.86)

Define,
eb · ∂αea = Aabα (2.87)

The relation ea · eb = δab implies

Abaα = −Aabα (2.88)
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With these results we see that

∂απ = (Dαπa)ea − (π ·A0
α)σ (2.89)

where
Dαπa = ∂απa + Aabα πb (2.90)

We thus get that

∂αn =
(
∂α
√

1− π2 − (π ·A0
α)
)
σ +

(
Dαπa +

√
1− π2Aa0

α

)
ea (2.91)

leading to

∂αn · ∂αn =
(
∂α
√

1− π2 − (π ·A0
α)
)(

∂α
√

1− π2 − (π ·A0
α)
)

+
(
Dαπa +

√
1− π2Aa0

α

)(
Dαπa +

√
1− π2Aa0

α

) (2.92)

where all repeated indices are summed over. The idea now is to keep
qudratic terms in π, this is the proverty of the poor man. This gives

∂αn · ∂αn ≈
(
π ·A0

α

)2
+DαπaDαπa + (1− π2)Aa0

α A
a0
α +

���
���

���
��:0

2
√

1− π2Aa0
α Dαπa

(2.93)
The last term is dumped because it is the product of a slow and fast piece
which is expected to integrate out to zero. Now we realize from eqn. (2.85)
that

Aa0
α A

a0
α = ∂ασ(x) · ∂ασ(x) (2.94)

This gives us

∂αn · ∂αn ≈ ∂ασ(x) · ∂ασ(x) +DαπaDαπa + Aa0
α A

b0
α

(
πaπb − δabπ2

)
(2.95)

Now, interestingly, there is a gauge structure underlying this theory. Recall
that the definition of ea is arbitrary while being “smooth”. The quantity

eb · ∂αea = Aabα (2.96)

is a connection or gauge field. This means suppose we choose a smooth
“O(N-1)” field R(x), the the gauge field will transform as

Aabα (x) = Ãacα (x)Rcb(x) + (DαR
−1)acRcb(x) (2.97)

leading to a gauge theory for the π fields. We will not pursue this further
here, but will come back to this later in a guise called the CPN model.
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Now we assume that σ(x) is really small and deviates only minimally
from the fully poralized ground state. In this case, Aab are small quantities
(kind of proportional to g) hence one can approximate

Dαπa = ∂απa (2.98)

With all of this

S[n] ≈ 1

2g

∫
ddx ∂ασ · ∂ασ+

1

2g

∫
ddx

[
∂απa∂απa + Aa0

α A
b0
α

(
πaπb − δabπ2

)]
(2.99)

Note that in this form, the action has a very nice structure. The slow fields
(Aa0

α ) appear as sources for the fast fields. By integrating out the fast fields,
we can find the interactions between the slow fields induced by the fast
fields. Everything is quadratic in the fast fields so this process here is very
easy. Taking the first step on “integrate” we use the result over gaussian
variables y

〈ef(y)〉 = e〈f(y)〉connected (2.100)

Now the base action for π-fields is
1

2g

∫
ddx ∂απa∂απa =

1

2g

∑
Λ̃≤|k|≤Λ

k2πa(k)πa(−k) (2.101)

This gives

〈πa(x)πb(x)〉 = δab
1

(2π)d

∫
Λ̃≤|k|≤Λ

ddk
g

k2
= δabgFd(Λ, Λ̃) (2.102)

with

Fd(Λ, Λ̃) =
Sd

(2π)d

∫ Λ

Λ̃

dk kd−3 =
Sd

(2π)d
1

d− 2

(
Λ(d−2) − Λ̃(d−2)

)
(2.103)

Thus
1

2g

∫
ddx

[
Aa0
α A

b0
α 〈
(
πaπb − δabπ2

)
〉
]

= −1

2
(N − 2)Fd(Λ, Λ̃)

∫
ddx ∂ασ · ∂ασ

(2.104)
One gets

Seff[σ] =
1

2

(
1

g
− (N − 2)Fd(Λ, Λ̃)

)∫
ddx ∂ασ · ∂ασ (2.105)

Now we rescale to get

Snew[σ] =
sd−2

2

(
1

g
− (N − 2)Fd(Λ, Λ̃)

)∫
ddx ∂ασ · ∂ασ (2.106)
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One gets

1

g(s)
= sd−2

[
1

g
− (N − 2)

Sd
(2π)d

Λd−2
(
1− s−(d−2)

)]
(2.107)

Writing out a dimensional version using g and definingKd = Sd/(2π)d, we
get

1

g(s)
= sd−2

[
1

g
−Kd(N − 2)(1− s−(d−2))

]
(2.108)

We get the flow equation

− 1

g(s)2

dg

d`
=

(d− 2)

g
−Kd(N − 2) (2.109)

resulting in
dg

d`
= −(d− 2)g +Kd(N − 2)g2 (2.110)

eqn:NLSM:gflow

The ultraviolet flow is described by

µ
dg

dµ
= (d− 2)g −Kd(N − 2)g2 (2.111)

This last equation can be used to see “asymptotic freedom”. Stay in
d = 2 and start at some scale µ0. Solving the flow equation we see that

1

g(µ)
− 1

g(µ0)
= Kd(N − 2) ln

(
µ

µ0

)
(2.112)

One sees that as µ→∞, we see that g(µ) goes to zero as

g(µ)→ 1

ln
(
µ
µ0

)Kd(N−2)
(2.113)

The theory becomes “asympotically free”.

2.2 Large N

We will now investigate the NLσM in the large N limit. This will illustrate
how the large N works (for a second time), and also give a clearer view or
the NLσM.

Let us pose a question to motivate this effort. We have seen that the
O(N) NLσMhas fixed point in d > 2. We have also that theO(N) φ4 theory
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has a fixed point for d < 4. Are these two fixed points “the same”? More
precisely, do these two fixed point describe distinct universality classes, or
are they belong to the same universality class?

Start with the NLσM action

S[n] =
1

2g

∫
ddx (∂αn · ∂αn−Bn1(x)) , n(x) · n(x) = 1 (2.114)

with an ultraviolet momentum cutoff Λ, where B is an external magnetic
field. Let us implement the constraint via a Lagrange multiplier (with n
now being unrestricted.)

Z =

∫
D[λ]D[n]e−S[n,λ] (2.115)

where

S[n, λ] =
1

2g

∫
ddx [∂αn(x) · ∂αn(x)−Bn1(x) + iλ(x) (n(x) · n(x)− 1)]

(2.116)
We can now integrate out the n fields to obtain

Z =

∫
D[λ]D[n1]e−S[n1,λ] (2.117)

where

S[n1, λ] =

∫
ddx

[
1

2g
(∂αn1∂αn1 −Bn1 + iλn2

1)− iλ(x)

2g
+
N − 1

2
ln det[−∇2 + iλ(x)]

]
(2.118)

(some constant terms have been dropped). Now we redefine

g → g

N
(2.119)

to get

S[n1, λ] = N

∫
ddx

[
1

2g
(∂αn1∂αn1 −Bn1 + iλn2

1)− iλ(x)

2g
+

1

2
ln det[−∇2 + iλ(x)]

]
(2.120)

We see that in the large N limit, the physics is determined by the saddle
point values of λ. Let assume a uniform saddle point to get

−B + 2m2σ = 0 (2.121)
eqn:NSLM:SPsig

1

g
− σ2 =

1

(2π)d

∫
ddk

1

k2 +m2
(2.122)

eqn:NSLM:SPm
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where we have redefined uniform saddle point function iλ = m2 and n1 =
σ.

First, for d = 2, with B = 0, we get

1

g
=

1

4π
ln

Λ2

m2
(2.123)

or,
m = Λe−

2π
g (2.124)

One finds that the system is gapped for any value of g. This is exactly
what we find from eqn. (2.110) which states that for d = 2 there is no
phase transition as function of g and that the system is in a massive phase
(in otherwords, there is RG flow for any finite value of g.)Find out what
happens in d = 1.

Now for d > 2, with B = 0. The “gap equation” becomes (this is
approximately true)

1

g
=

Kd

d− 2
Λd−2 −md−2Kd

π

2 sin π(d−2)
2

+
m2Kd

d− 4
Λd−4 (2.125)

where we have used eqn. (1.96) and eqn. (1.50) One immediately sees that
there is a critical point for d > 2, this is where the mass vanishes. One get

1

gc
=

Kd

d− 2
Λd−2 (2.126)

precisely as obtained from the RG analysis. Further, we have, in 2 < d < 4,

1

gc
− 1

g
=

πKd

2 sin(π(d− 2)/2)
md−2 (2.127)

Defining t = (g − gc)/gc, we get

m ∼ t1/(d−2) =⇒ ξ ∼ t−1/(d−2) (2.128)

We obtain
ν =

1

d− 2
(2.129)

precisely as found from the RG analysis. Suddenly, we realize that this is
also exactly what we found in the large N analysis of the O(N) φ4 theory!
Suggesting that the critical point is in the same universality as the φ4 O(N)
theory!
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Now, the first saddle point equation eqn. (2.121) with B = 0 gives that
σ = 0, when m 6= 0. This is a statement that the gapped phase for g > gc
is O(N) symmetric. Interestingly, we see that for g < gc, we get that m = 0
and σ 6= 0, and eqn. (2.122) give

σ2 =
1

g
− 1

gc
=⇒ σ ∼ |t|1/2 (2.130)

or β = 1/2! This again, agrees with the full RG result of the previous
section. More strikingly, this also agrees with the result for β from the
large N φ4 theory.

Now that two of the critical exponents are the same for the large N
limit of the O(N) NLσM and φ4 theories, it follows from scaling laws that
all of the critical exponents are equal. The critical point of both theories
belong to the same universality class (different from the Landau meanfield
universality class) atleast at sufficiently large N in d > 2.

2.3 Upshot

The main results of this chapter are the following. Spatial dimensions
d ≤ 2 are special, in that one cannot have a true long range order at finite
temperatures for a system with a continuous symmetry like O(N), N ≥ 2.

2.3.1 d>2

There are two phases for d > 2 (and N > 3) separated by a critical point gc
which is order ε = d− 2 (at one loop level). The phase for g > gc is gapped
(finite correlation length), and that for g < gc is a gapless phase (Goldstone
modes).

gg = 0
gappedgapless

gc ∼ ε

Further, the critical point is the same universality class as the O(N) φ4

theory (atleast at large enough N ).

2.3.2 d=2

For N > 2 one has an RG flow diagram like this:

gg = 0
gapped
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In other words, our analysis shows that while Mermin-Wagner theorem
does not allow for long range order at finite temperatures, the phase that
is realized is gapped, i. e., with a finite correlation length.

For N = 2 our RG analysis, at least to one loop level, suggests that
there is a scale variant phase, as it predicts now flow for g. What is really
going on for N = 2 and d = 2? This is what we will discuss in the next
chapter.



3

Berezinskii-Kosterlitz-Thouless
(BKT) Physics

3.1 Whats the hoopla about?

Landau’s ideas have influenced much of the thought and understanding
of complex systems. One of his key ideas is that symmetry is a central
concept that helps describe a phase. The clichéd example is that of a short
ranged ferromagnet, a states that breaks the rotational symmetry of the
Hamiltonian. Symmetries may be continuous or discrete. In a Heisen-
berg magnet, the rotational symmetry is continuous and is encoded in the
group SU(2). If on the other hand the material has an easy axis, then
the spins like to align along this axis, and the SU(2) (or SO(3)) symme-
try group is then reduced to Z2, i. e., a discrete symmetry. One could also
have an easy plane, where the spins are confined to a plane resulting in a
U(1) orO(2) symmetry. U(1) orO(2) is the “simplest” possible continuous
symmetry. An array of Josephson junctions is a canonical example of a
system with U(1) (or O(2)) symmetry.

The well known Glodstone theorem (which we saw in the last chapter),
says that if a continuous symmetry is broken, such a symmetry broken
ground state has gapless excitations above it. This arises from the "long
wavelength functuations" of the "order parameter" field. The intriguing
story is that in d = 2 (two dimensions), these Goldstone modes from the
infrared can wreck havoc. In particular any system with a continuous
symmetry cannot have a long range ordered phase at finite temperature
– a result usually called the Mermin-Wagner theorem. If one is casual,
one may conclude that there are no finite temperature phase transitions in
d = 2 if there is a continuous symmetry, and this was found less casually

63
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via the NLσMapproach for N > 2. In other words, this result (no phase
transition) is almost true! Well, almost! If the symmetry group is U(1), then
a phase transition is indeed possible without any conflict with the Mermin-
Wagner theorem! In other words the transition, the Berezinskii-Kosterlitz-
Thouless (BKT) transition, will be between phases that do not have any
long range order. In other words, BKT transition provides a paradigmatic
example of a phase transition without symmetry breaking (no long range
order) – this is what the hoopla (well, we now realize that this is not hoopla
at all!) is about. Quite remarkably, this is an outcome of the topology of the
group U(1). In particular, π1(U(1)) = Z, and this non-null homotopy is the
hero of this story.

In fact, the BKT work brought out the key notion of topological defects,
which are certain types of excitations. This set a new paradigm to under-
stand many things. In fact, Polyakov’s famous results on the the confined
nature of compact U(1) gauge theory in three dimensions was inspired by
this. Bottomline: BKT ideas set a new direction.

Lets dig in.

3.2 The XY model in d = 2

Consider a square lattice whose sites are labeled by i, j and a lattice pa-
rameter a0. At each of the sites that is a “planar spin” (phase of super-
conducting dot) whose configuration is described by the angle θ that it
makes with the x-axis of the square lattice, the configuration of the spin at
site i is θi. The spins interact with their nearest neighbours; simplest is a
ferromagnetic interaction, leading to a Hamiltonian

H = J
∑
i,δ

(1− cos(θi+δ − θi)) (3.1)
eqn:BKT:XYHam

where δ = x or y, a form that anticipates future developments. The system,
obviously, has a global U(1) or O(2) symmetry given by θi 7→ θi + φ, and
this leaves that Hamiltonian invariant. As is evident, θi themselves are the
not the interesting objects; it is the spin at site i described by

si = eiθi ≡ (cos θi, sin θi) (3.2)

One is interested in quantities such as 〈si·sj〉, i. e., the correlations between
spins at different sites.

The ground state is easy to find. Make all the spins parallel, i. .e, choose

θi = ϑ, (3.3)
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Figure 3.1: Map from C 7→ S1. Top “spin wave” controur. Bottom: Vortex
contour fig:Contour

without loss of generality we can choose ϑ = 0. What about the excited
states? Any state where θi differs from its neighbour (but, not by an inte-
gral multiple of 2π) will cost energy!

3.2.1 Kinematics

Now, I will attempt to convince you that there are two distinct types of
excitations possible. To this end look at the system on scales much larger
than the lattice spacing, our model looks like the 2d plane. A lattice point
is not described by a 2D vector r and the spin configuration there by θ(r).
In this language, the ground state is θ(r) = ϑ.

Now the excitations have θ(r) which are not homogeneous. Let us con-
sider an arbitrary (non-self intersecting) closed loop C in the plane. Start
from an arbitrary point on C and, traverse C say counterclockwise. As we
traverse C we obtain a map from C 7→ U(1). Note that U(1) = {eiθ} itself
can be viewed as the circle S1. Now, we ask the following question: Does
the map from C to S1 “loop around” S1? One can answer this question by
computing a certain quantity. Let rs be the starting point on the loop C
and re be the end point (of course, re = rs!). Compute

n[C] =
1

2πi

∫
C

dr · (s∗(r)∇s(r)) . (3.4)
eqn:WN

One immediately sees that n[C] is an integer (no wonder we fell for the
notation “n′′[C]) – how? Note that s∗(r)∇s(r) = i∇θ(r), so

n[C] =
1

2π

∫
C

dr ·∇θ(r) =
1

2π
(θ(re)− θ(rs)) . (3.5)

eqn:WNint

It will be hasty to conclude that the right hand side vanishes. Note that
what we need is that s(r) be a single valued function, which means that
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θ(re) need not be equal to θ(rn), all we need is that θ(re) as obtained from
the above equation satisfies

θ(re) = θ(rs) + 2πm, m ∈ Z (3.6)

Our final result for eqn. (3.7) is

n[C] ∈ Z. (3.7)
eqn:WN

A little reflection will convince you that this integer associated with the
contour C tells you how many times you loop around S1 ≡ U(1) as you
go around C.

Suppose, we find that C, as shown fig. 3.1 (top), is of the type that does
not loop around S1, i. e., n[C] = 0, we call C a SW contour. Suppose, we
find that for the given excitation, every contour C is of SW type, we call
this excitation (i.e., θ(r)) a spin wave excitation.

If a given excitation is not a spin wave excitation, then there is some
contour C such that n[C] 6= 0. To understand what is going on here, let us
start with a premise that everything on the contour C is smooth and nice.
What this really means is that ∇θ(r) that we introduced near eqn. (3.5) is
smooth; in fact we even give it its own name

v(r) = ∇θ(r) (3.8)
eqn:vgradtheta

Now, we can cast eqn. (3.5) as∫
C

dr · v =

∫
A

da ·∇× v (3.9)

where A is the area enclosed by C, and da is the area element. First, lets
revisit spin wave excitations from the perspective of v. The LHS of the last
equation vanishes for every C (by definition), and this implies that

∇× v = 0 (spin wave excitation) (3.10)

for a spin wave excitation. For non spin wave excitation, we have∫
A

da ·∇× v = 2πm (3.11)
eqn:vortInt

where m is a nonzero integer. What does this mean? In other words, what
does a non spin wave excitation correspond to?

To understand this, we will first visit the Helmholtz theorem which
says that every vector field can be written as

v(r) = ∇u+ ∇×w (3.12)
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(a) m = 1
fig:vortp1

(b) m = −1fig:vortm1

(c) m = 2
fig:vortp2

(d) m = −2fig:vortm2

Figure 3.2: Elementary vortex excitations. fig:vort

Since we are in d = 2, we see that w = w(r)e3 where e3 is a unit vector
perpendicular to the plane. In component from we can write this even
better:

vα = ∂αu+ εαβ∂βw (3.13)
eqn:Helm

where εαβ is the 2d alternating tensor. In this language eqn. (3.11) can be
written as ∫

A

d2r εαβ∂αvβ = 2πm, (3.14)

which on using eqn. (3.13) becomes

−
∫
A

d2r∇2w = 2πm. (3.15)

These last two equations means that the vorticity or circulation of v en-
closed inside C is 2π times an integer, i.e., vorticity is quantized ! Note that
this is true for all contours C on which v(r) is nice.

We now start wondering what sort of v(r) will produce quantized cir-
culation for slightly different contours. Consider the following

v(r) =
1

r
eφ (3.16)

eqn:vortv
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where we use polar coordinate (r, φ). We see that any contour C that en-
closes the origin, ∫

C

dr · v = 2π (3.17)

Note further that if C does not enclose the origin, then
∫
C

dr · v = 0! Now
we can ask, what u and w give the v of eqn. (3.16); it is not difficult to see
that

u(r, φ) = 0, and w(r, φ) = ln(r). (3.18)
eqn:uw

will do the job. You may have realized the w we found corresponds to the
electrostatic potential of a unit charge place at the origin.

How do we understand this from the prespective of eqn. (3.8)? Sup-
pose we try to combine eqn. (3.8) witn eqn. (3.13), then we see that

∂1θ = ∂2w

∂2θ = −∂1w
(3.19)

eqn:thetaw

Remembering Cauchy-Reimann equations, one sees that

θ(r, φ) = φ (3.20)

Thus, θ(r, φ) is multivalued function, and this corresponds to the elementary
vortex state! Do not forget that although θ(r, φ) is multivalued, the spin
field eiθ is single valued.

Fig. 3.2 shows elementary vortex excitations of different quantized vor-
ticities. For an m-vortex, the θ field is given by

θm−vortex(r, φ) = mφ = mθe(r, φ) = mθe(r) (3.21)

where we have introduced θe which is the field of a positive unit vortex.
Some comments are in order.

1. Note that we have “centered” the vortex on a lattice site in fig. 3.2.
Consequently, the spin at the origin is “confused” – what this actu-
ally means is that the theory has an ultraviolet cutoff and we should
not look “too closely” at any spin. We handle this by introducing a
vortex core radius ac. Note that ac will be of the same order as the
lattice constant a (and in fact some authors do not distinguish the
two). Also, θ(r) is smooth if one “does not enter” a core region.

2. Any general vortex excitation can now thought of as being made up
of many elementary vortices labeled by `. The `-th vortex is located
at r` and has a vorticity of m`, giving us

θv(r) =
∑
`

m`θe(r − r`). (3.22)
eqn:thetav
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Note that, C is a contour that avoids any core region, then∫
C

dr ·∇θv(r) = 2π
∑

` inside C

m`. (3.23)

3. If the vortex configuration V = {m`, r`} is given, then eqn. (3.22) is
one possible realization of this in terms of θv. One an add a SW field
to this, and this will again correspond to the same configuration of
V .

4. What has emerged is that any state θ(r) can be decomposed (not
uniquely) as

θ(r) = θs(r) + θv(r) (3.24)
eqn:BKT:thetasplit

where θs(r) is a single valued function, and θv(r) is multivalued. With
this, we can rewrite eqn. (3.8) as

v(r) = ∇θ(r) = vs(r)︸ ︷︷ ︸
∇θs

+vv(r)︸ ︷︷ ︸
∇θv

(3.25)
eqn:BKT:vsplit

such that
∫
C

dr · vs = 0 and
∫
C

dr · vv = 2π
∑

` inside Cm`.

5. Two excitations θ1(r) and θ2(r) are said to be “smoothly deformable
to each other” if θ1(r)− θ2(r) is an SW type excitation.

6. An elementary vortex excitation is an infinite two dimensional plane
is “topological”. Suppose, we have a θ(r) such that

∫
C

dr ·∇θ = 2π if
C encloses the origin, i.e., an elementary vortex a the origin. Suppose
find a new excitation by a smooth deformation of this excitation, by
addition of a spin wave excitation, we see that the vortex at the origin
cannot be moved away. In other words, smooth deformations can
not get rid of vortices, and hence if a vortex is handed over to us,
then no smooth deformation will get rid of it, and is topological in
this sense.

By the same token, one cannot have a single elementary vortex exci-
tation in a 2d box with periodic boundary conditions, again for topo-
logical reasons! To see this note that in a periodic box, θ(r) need not
be periodic, only s(r) has to be periodic. The periodic box is same
as a 2-torus. We can always find a contour C that does not enclose
any vortices, and thus

∫
C

dr ·∇θ = 0. Viewing the contour C as the
boundary of the complementary region (on the torus), we see that∫
C

dr · ∇θ = 2π
∑

`m`, which now includes all the vortices of the
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excitation. If we assume that there is only one elementary excitation,
then we will get m for that excitation is zero, since 0 = 2π

∑
`m`.

What this means, of course, is that on a torus, the sum total of vor-
ticities of all vortices much vanish.

We now realize that the term “topological defect” for a vortex is indeed
an apt one! Now a natural question arises. Can vortex excitations be ac-
cessed thermally? To answer this question, we need to calculate the ener-
getics of the these types of excitations. It is an appropriate place to make
an important comment. We saw in the previous discussion that excitations
are spin wave type, or vortex type. That discussion is entirely kinematical,
in that the possibility of such excitations was deduced solely from the fact
that that spin s(r) is single valued while θ(r) is multivalued. Now, turn-
ing to the energetics, we attempt to understand if the vortex excitations
are thermally possible and if so what effect(s) they have on physics of the
XY system.

3.2.2 Energetics

The Hamitonian eqn. (3.1) is a pain to handle, in particular the cosine term
which respects the fact that θ is really a compact variable. We can take
a pragmatic approach to handle this, which entails two physically moti-
vated ideas. (i) We will include vortex excitations (which actually arise
from the compact nature of θ) (ii) We will “linearlize” the energetics, in
that energy will be proportional to the square of the deformation. Putting
these two ideas together, we rewrite eqn. (3.1) as

H =
ρ0

2

∫
d2r∇θ ·∇θ =

ρ0

2

∫
d2r v · v (3.26)

where ρ0 = J (in d dimensions ρ0 = Ja2−d, recall previous chapter) is the
stiffness. The key point is that θ and v are short forms for the decompo-
sition into spin wave (smooth) and vortex excitations as in eqn. (??) and
eqn. (??).

Okay, lets get to work. We will begin with some manipulations

H =
ρ0

2

∫
d2r (∇θs + ∇θv)

2

=
ρ0

2

∫
d2r

[
(∇θs)

2 + (∇θv)
2 + 2∇θs ·∇θv

]
= Hs +Hv + ρ0

∫
d2r∇θs ·∇θv

(3.27)



3.2. THE XY MODEL IN D = 2 71

Let us analyze the last term. Note that for any vector c,

c ·∇θv = c×∇w (3.28)

where w is related to θv via eqn. (3.19). Thus∫
d2r∇θs ·∇θv =

∫
d2r∇θv ×∇w

= − 1

(2π)4

∫
d2q1d2q2 (q1 × q2)θv(q)w(q)

∫
d2r ei(q1+q2)·r

=
1

(2π)2

∫
d2q (q × q)θv(q)w(−q)

= 0

(3.29)

and we get this absolutely nice result

H =
ρ0

2

∫
d2r∇θs ·∇θs︸ ︷︷ ︸

Hs

+
ρ0

2

∫
d2r∇θv ·∇θv︸ ︷︷ ︸

Hv

(3.30)
eqn:BKT:HsHv

that the spin wave “does not talk” to the vortex. Of course, this is a result
of “linearizing” the cosine potential. The term Hs is very easy to handle,
this is nicely quadratic in θs and we can use very standard methods (as we
will do below). Hv requires a bit more work. First note that

∇θv ·∇θv = ∇w ·∇w (3.31)

as is evident from eqn. (3.19). Now we wish to write an analogous equa-
tion as eqn. (3.22) for w. Fist note from eqn. (3.18) that

we(r) = ln

( |r|
R

)
(3.32)

and

wm−vortex(r) = m ln

( |r|
R

)
(3.33)

The analog of eqn. (3.19) is then

w(r) =
∑
l

ml ln

( |r − r`|
R

)
(3.34)

eqn:BKT:wv
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Note now an extremely nice result

∇2w = 2π
∑
`

m`δ(r − r`) (3.35)
eqn:Green

We thus see that

Hv =
ρ0

2

∫
d2r∇w ·∇w

=
ρ0

2

∫
d2r

([∑
`

m2
`(∇ ln |r − r`|)2

]
+

[∑
`′ 6=`

m`m`′∇ ln |r − r`| ·∇ ln |r − r`′|
])

(3.36)
eqn:Hvtmp

Evaluation of the above requires two results. First,∫
d2r (∇ ln |r|)2 = 2π

∫ ∞
0

drr
1

r2
(3.37)

We now introduce R, the system size and regulate the short distance by
the core radius ac to get

ρ0

2

∫
d2r (∇ ln |r|)2 = πρ0 ln

(
R

ac

)
+ Ec, (3.38)

eqn:BKT:res1

where Ec is the core energy which subsumes all the ultraviolet physics.
The second useful result is∫

d2r∇ ln |r − r1| ·∇ ln |r − r2| =
∫

d2r
[
∇ · (ln |r − r1| ·∇ ln |r − r2|)− ln |r − r1|∇2 ln |r − r2|

]
=

(∫
Bound

dφRer · ln |r − r1|∇ ln |r − r2|
)
− 2π ln |r1 − r2|

= 2π lnR− 2π ln |r1 − r2|

= 2π ln

(
R

ac

)
− 2π ln

( |r1 − r2|
ac

)
(3.39)

eqn:res2

where eqn. (3.35) is used. Using eqn. (??) and eqn. (3.39) in eqn. (3.36), we
get

Hv = −πρ0

∑
` 6=`′

m`m`′ ln

( |r` − r`′ |
ac

)
+

(∑
`

m2
`

)
Ec+πρ0

(∑
`

m`

)2

ln

(
R

ac

)
.

(3.40)
In the thermodynamic limit, only those vortex excitations with a vanishing
total vorticity are possible due to the last term.
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3.2.3 High Temperature Phase

What is the physics at when T � J of the XY-model eqn. (3.1)? We ask
how is a spin at a point r = rex (r being measured in units of the lattice
spacing) correlated with the one a the origin. Thus we need

〈s(r)s(0)〉 = 〈
r∏
i=0

ei(θi+x−θi)〉 (3.41)

where we have numbered the sites along the x-axis starting from 0 at the
origin to r at the point r. Now θi+x− θi is a “bond variable”, and these are
what determine the energy.

The simple argument now is that is that when T � J each bond “will
do its thing” and be uncorrelated with others.

〈
r∏
i=0

ei(θi+x−θi)〉 =
r∏
i=0

〈ei(θi+x−θi)〉 (3.42)

Now, with K = J/T ,

〈ei∆θ〉 = 〈cos ∆θ〉 =

∫ 2π

0
d(∆θ)eK cos (∆θ) cos (∆θ)∫ 2π

0
d(∆θ)eK cos (∆θ)

=
d

dK
ln

[∫ 2π

0

d(∆θ)e−K cos (∆θ)

]
=

d

dK
ln I0(K)

≈ K

2

(3.43)

One gets, therefore that

〈s(r)s(0)〉 ∼
(
T

J

)−|r|
=⇒ e−

|r|
ξ(T ) (3.44)

where
ξ(T ) ∼ 1

ln
(
T
J

) . (3.45)

is the correlation length (in units of the lattice spacing) and vanishes as
T → ∞. In other words, at any T � J , we have a system with a finite
correlation length. Colloquially, the high temperature phase is a “gapped
phase” (this will be literally true when we make the quantum-classical
connection). By the way, this way of analyzing lattice models is quite stan-
dard and goes under the name of “strong coupling” expansions (large T ).
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3.2.4 Low Temperature Phase

In the very low temperature phase T � J , vortex excitations are extremely
unlikely. One can estimate the correlations assuming only spin wave exci-
tations.

First we note some a useful result. Suppose x is a Gaussian random
variable with variance σ2 = 〈x2〉, then

〈eix〉 = C

∫ ∞
−∞

dx e−
x2

2σ2 eix =

[
C

∫ ∞
−∞

dx e−
(x−iσ2)2

2σ2

]
e−

σ2

2 = e−
〈x2〉

2 (3.46)

Thus,
〈ei(θ(r)−θ(0))〉 = e−

1
2
〈(θ(r)−θ(0))2〉 (3.47)

We have to, thus, evaluate, (V = πR2 is the 2-volume (area) of the system,
J0 is Bessel function)

〈(θ(r)− θ(0))2〉 =
1

V

∑
k1,k2

〈θ(k1)θ(k2)〉︸ ︷︷ ︸
= T
ρ0|k1|2

δk1+k2,0

(
(eik1·r − 1)(eik2·r − 1)

)

=
T

ρ0

1

(2π)2

∫
d2k

1

|k|2 (2(1− cos(k · r)))

=
T

ρ0

1

2π

∫ π/ac

π/R

dk

k
(1− J0(kr))

=
T

ρ0

1

2π

∫ πr/ac

πr/R

dk

k
(1− J0(k))

(3.48)

The last integral can be evaluated approximately. We expect r � ac, while
r � R. There is a nice way to evaluate this integral by using the asymp-
totic forms of the Bessel functions. But there is an even nice way: look at

f(|r|) =
1

(2π)2

∫
d2k

1

|k|2 (2(1− cos(k · r)))

∇2f(|r|) = ∇2 1

(2π)2

∫
d2k

1

|k|2
(
(2−

[
e−i(k·r) + ei(k·r)

]
)
)

=
2

(2π)2

∫
d2k ei(k·r) = 2δ(r)

=⇒ f(|r|) =
1

π
ln
( r
R

)
(3.49)

Putting all this together, at low temperatures,

〈s(r)s∗(0)〉 ∼ e
− T

2πρ0
ln( |r|R ) ∼

(
R

|r|

) T
2πρ0

(3.50)
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We thus see that the low temperature phase has power law correlations with
a dimensionless exponent that depends on the temperature!

These are indeed very interesting results, and if you have not seen this
stuff before, very puzzling. We have a system that has a finite correlation
length at high temperatures, and a power law phase at low temperatures!
Note that the is a regime of power law phases for different low temper-
atures is also consistent with the one loop RG result, that there is no RG
flow i.e., the power law (“critical”) phase remains so for small changes in
g, i. e., temperature. The question is how does the change from the short
ranged correlated system to a power law correlated state occur? Note that
the power law correlated phase does not have long range order, i. e., does
not break the O(2) symmetry.

Enter BKT! Our discussion closely follows the KT paper. Suppose, I am
in a large but finite sample of radius R. Eqn. (3.38) gives the energy of a
single vortex. For a large system, the free energy change associated with
the generation of a single vortex is

∆F = πρ0 ln

(
R

ac

)
− T ln

(
R2

a2
c

)
(3.51)

We see that this process is spontaneous when

T > Tv =
πρ0

2
(3.52)

eqn:BKT:Tv

For T > Tv we expect vortices to proliferate and destroy the power law
correlated phase.

Although this picture is indeed useful, what really happens is this.
Single votrices are expensive, but the system can make vortex-anti-vortex
pairs. A pair will have an energy of interaction given by

Epair = 2πρ0 ln

(
L

ac

)
(3.53)

where L is the distance between the pairs. At any given temperature,
there will be a population of vortex anti-vortex pairs. This population
will “screen” the interactions between the a new pair such that the energy
actually looks like the

Epair =
2πρ0

ε(L)
ln

(
L

ac

)
(3.54)

where ε(L) is the effective (scale-dependent) dielectric constant that ac-
counts for the screening produced by all vortex pairs of size < L. ε(L) is
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temperature dependent and diverges at a critical temperature making the
unbinding of thermal vortices (making their equilibrium L → ∞). When
this unbinding takes place, the power law correlated phase gives way to a
short range correlated phase. The remarkable thing is that this unbinding
takes place at a specific temperature called TBKT. How does one implement
this physical idea? This was figured out in detail by Kosterliz via RG. He
looked at the RG flow of ρ(L) ≡ ρ0

ε(L)
. We shall see this in some depth.

The careful reader may have noticed a crucial difference between this
system and the previous ones looked at in this book. We had applied a
magnetic field that deliberately breaks the symmetry. We do not attempt
to do that here since both sides of the putative transition at a Tv are U(1)
symmetric. We need to look for an effective stiffness (or “susceptibility”)
that respects the internal symmetry. At a microscopic level this is done in
the following way. Suppose we go to each bond and say that the phase
difference on that bond prefers to have a value Aiδ, we write

H[A] = J
∑
iδ

(1− cos(θi+δ − θi − Aiδ)) (3.55)
eqn:BKT:twistedXY

First note that application of Aiδ still preserves the U(1) global symmetry
of the system. If we let Aiδ = Aδ, i. e., a uniform A-field, then we get that
ground state has

∆δθi = θi+δ − θi = Aδ (3.56)
eqn:BKT:twistedGS

and one can see that there is a unique value of θi (modulo global U(1)
symmetry) in the ground state. (In fact, Aiδ need not be uniform for this to
be true; the necessary condition is that Aiδ should not enclose a magnetic
flux in any plaquette.). One sees that one can derive a “current” operator
via

jiα = − ∂H

∂Aiα

∣∣∣∣
A=0

= J sin(θi+α − θi) (3.57)
eqn:BKT:vel

For the ground state described in eqn. (3.56), we see that

jiα = J sinAα = JAα (3.58)

If we view Aiα as a “force”, and jiα as ”response”, then we see that

∂〈jiα〉
∂Aβ

= καβ =︸︷︷︸
for eqn. (3.56)

Jδαβ (3.59)
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καβ is the (“superfluid”) stiffness. More generally, we write

F = −T lnZ[A], Z[A] = tr{θ}e−H[A]/T

≈ −V 1

2
AακαβAβ

=⇒ καβ =
1

V

∂2F

∂Aα∂Aβ

(3.60)
eqn:BKT:kappa

which is hardly surprising (we did not have a linear term in A as free
energy should not depend on the direction ofA). Our next task is to obtain
an explicit expression for καβ .

To see what to do in the continuum, we start with the following idea.
Suppose, Aiα were “small”. Then,

cos(∆αθi − Aiα) = cos(∆αθi) cos(Aiα) + sin (∆αθi) sin(Aiα)

≈ cos(∆αθi) + sin(∆αθi)Aiα −
1

2
A2
iα.

(3.61)

With this, we get

H[A] = J
∑
iδ

(1− cos(θi+δ − θi))−
∑
iδ

jiδAiδ +
J

2

∑
iδ

A2
iδ (3.62)

where the current viδ is defined in eqn. (3.57). This, naturally motivates
the continuum version, using eqn. (3.30)

H[A] = Hs +Hv −
∫

d2r j(r) ·A(r) +
ρ0

2

∫
d2rA2(r) (3.63)

where we have used the current j = ρ0∇θ as simply ∇θ. We are now
ready to obtain καβ defined in eqn. (3.66). One finds an explicit expression

Z[A] =

∫
d{θ}e−H/T

(
1− ρ0

T

∫
d2r∇θ ·A(r)) +

ρ2
0

T 2

1

2

∫
d2rd2r′∇rθ ·A(r)∇r′θ ·A(r′) + . . .

)
× e ρ02

∫
d2rA2(r)

= Z0

[
1− 1

T

∫
d2r〈∇θ〉 ·A(r) +

1

T 2

∫
d2rd2r′A(r) · 〈∇rθ ⊗∇r′θ〉 ·A(r′)

]
× e ρ02

∫
d2rA2(r)

(3.64)

Since 〈∇θ〉 vanishes, we have

F = F0 +
ρ0

2

∫
d2rA2(r)− 1

2

ρ2
0

T

[∫
d2rd2r′A(r) · 〈∇rθ ⊗∇r′θ〉 ·A(r′)

]
(3.65)
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WhenA is taken to be uniform, we get

καβ = ρ0δαβ −
ρ2

0

TV

∫
d2rd2r′ 〈∂αθ(r)∂

′

βθ(r
′)〉 (3.66)

eqn:BKT:kappa

which is not surprising – this is the Kubo formula (of course, what else
can it be?). Before proceeding with the evaluation, will take a moment to
understand what has happed here. Based on eqn. (3.55) and eqn. (3.56),
what we are doing is we are imposing a gridient of θ on the system. If you
take a moment, you will see that this messes up the boundary conditions
on the periodic box! There is a way out of this, it is to imagine that, the
fields θs on the boundary is fixed at A · r. By construction the θv part will
be automatically periodic. What this means is, for example,∫ L

0

dx∂xθs(x, y) = 0 (3.67)

where the box runs from 0 to L along the x-direction, which implies∫
d2r∂αθs(r) = 0 (3.68)

eqn:BKT:FixBD

To evaluate the result, we use eqn. (3.25) and eqn. (3.34), i. e.,

∂αθ ≡ ∂αθs + εαβ∂βw (3.69)

Thus, we need

ρ2
0

TV

∫
d2rd2r′ 〈∂αθs(r)∂

′

βθs(r
′)+εβγ∂αθs(r)∂′γw(r′)+∂αθs(r)∂′γw(r′)+εαγεβδ∂γw(r)∂

′

δw(r′)〉
(3.70)

Let us analyze this term by term. First∫
dd2rd2r′〈∂αθs(r)∂′βθs(r

′)〉 = 0 (3.71)

owing to eqn. (3.68). The second and third terms vanish because vortices
and spin waves are uncorrelated. Finally, we note that

εαγεβδ = δαβδγδ − δαδδγβ (3.72)

and this the last term is

ρ2
0

TV

∫
d2rd2r′〈εαγεβδ∂γw(r)∂

′

δw(r′)〉

=
ρ2

0

TV

∫
d2rd2r′〈δαβ∂γw(r)∂

′

γw(r′)− ∂αw(r)∂
′

βw(r′)〉
(3.73)
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Introduce Fourier transform,

w(r) =
1√
V

∑
k

eik·rw(k), w(k) =
1√
V

∫
d2re−ik·rw(r) (3.74)

ρ2
0

TV

∫
d2rd2r′〈δαβ∂γw(r)∂

′

γw(r′)− ∂αw(r)∂
′

βw(r′)〉 =

− 1

V

∑
k1,k2

[
ρ2

0

TV

∫
drdr′ei(k1·r+k2·r′) (δαβk1γk2γ − k1αk2β) 〈w(k1)w(k2)〉

]
(3.75)

Now, to perform the r, r′ integrals, we define

R =
1

2
(r + r′) x = r − r′ (3.76)

This change has a unit Jacobian, and so,

− 1

V

∑
k1,k2

[
ρ2

0

TV

∫
drdr′ei(k1·r+k2·r′) (δαβk1γk2γ − k1αk2β) 〈w(k1)w(k2)〉

]
= − 1

V

∑
k1,k2

[
ρ2

0

TV

∫
dRdxei(k1+k2)·R+i((k1−k2)·x/2) (δαβk1γk2γ − k1αk2β) 〈w(k1)w(k2)〉

]
=
∑
k

[
ρ2

0

TV

∫
dxeik·x (δαβkγkγ − kαkβ) 〈w(k)w(−k)〉

]
= δk,0

ρ2
0

T
(δαβkγkγ − kαkβ) 〈w(k)w(−k)〉

(3.77)

where the last step is obtained by a simple manipulation1. Now from
eqn. (3.34), we see that

w(k) = − 2π

|k|2M(k) (3.78)

M(k) is the fourier transform of the vortex density

M(r) =
∑
`

m`δ(r − r`) (3.79)

1We use the trick:
∑

k δk,0k̂αk̂β = limk0→0

∫ 2π

0
dφ
∫ k0
0

dkk
(

1
πk20

k̂αk̂β

)
= 1

2δαβ .
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We thus see that the integral contribution is

2π2ρ2
0

T
δαβ lim

k→0

〈|M(k)|2〉
|k|2 (3.80)

eqn:BKT:rhoeff

Thus, we get, ρ the effective stiffness (diagonal part of καβ at any finite
temperature to be

ρ = ρ0 −
2π2ρ2

0

T
lim
k→0

〈|M(k)|2〉
|k|2 (3.81)

eqn:BKT:rhofin

This is a key result. Before we analyze this, we will understand this in a
more transparent way.

Work in d dimensions. Consider the following problem. It is possi-
ble for “charges” of charge m` to appear if an energy cost m2

`Ec is paid.
Charges interact with each other via a coulomb Kernel Ud(|r|). If ε0 is the
bare dielectric constant, then

∇2Ud(|r|) = − 1

ε0
δ(r) (3.82)

i. e., Ud(|r|) is the Green’s function of the Laplacian. We can define a charge
distribution

M(r) =
∑
`

m`δ(r − r`) (3.83)

The potential at any point is

U(r) =
∑
`

m`Ud(|r|) (3.84)

The total energy is given by

H[{m`}] =

∫
ddr

ε0
2
|∇U(r)|2 +

∑
`

m2
`Ec (3.85)
eqn:BKT:CoulombGas

This is called the Coulomb gas. Charges may be thermally excited in the
Coulomb gas, and this will change the dielectric constant of the medium.
Let Mext(r) be an external charge distribution. In vacuum (no thermally
excited charges), this will produce a potential

|k|2Uext(k) =
1

ε0
Mext(k) (3.86)
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When we put this in the external charge distribution in the Coulomb gas,
the potential that develops will be different. We can write, and expression
for this potential as

|k|2Ufin(k) =
1

ε0
(Mind(k) + Mext(k)) (3.87)

But the charge induced is determined by the response of the Coulomb gas
to external perturbations. Let the charge response be χ(k). Then

Mind(k) = χ(k)Uext =
χ(k)

ε0|k|2
Mext(k) (3.88)

Thus, we see that

|k|2Ufin(k) =
1

ε0

[
1 +

χ(k)

ε0|k|2
]
Mext(k) (3.89)

We thus see that the effective (k) dependent dielectric constant due to the
induced charges is

1

ε(k)
=

1

ε0

[
1 +

χ(k)

ε0|k|2
]

(3.90)

Now, recall that

χ(k) = − 1

T
〈M(k)M(−k)〉 (3.91)

where the mean is evaluated over the ensemble defined by the equilib-
rium Coulomb gas eqn. (3.85). This leads to the effective long wavelength
dielectric constant

1

εeff
=

1

ε0
− 1

ε20T
lim
k→0

〈M(k)M(−k)〉
|k|2 (3.92)

Compare this with eqn. (3.80)...and it strikes! The XY model in d = 2 is
nothing but the Coulomb gas!! We will see the Coulomb gas for any d is an
important problem. Understanding the Coulomb gas, therefore, is crucial!
I am not entirely sure about this, but it seems that KT were the first to
analyze the Coulomb gas in d = 2,...in 1970s!! Very surprising!

With these insights, let us calculate eqn. (3.81) explicitly

M(k) =
1√
V

∑
`

m`e
−ik·r` (3.93)
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First, some generalities

M(k) =
1√
V

∫
d2r e−ik·rM(r)

=⇒ 〈M(k)M(−k)〉 =
1

V

∫
drdr′e−ik·(r−r′)〈M(r)M(r′)〉

(3.94)

Nothing much so far, we are familiar with this. But now consider for
“small” k,

〈M(k)M(−k)〉
|k|2

=
1

|k|2 〈
[

1

V

∫
d2rd2r′

(
1− ik · (r − r′)− 1

2
(k · (r − r′))2 + . . .

)
M(r)M(r′)

]
〉

(3.95)

We have to use some physics to evaluate the quantities. Since having a
finite total vorticity will cause a large energy, we expect[∫

d2rM(r)

]
= 0. (3.96)

Next,
1

V

∫
d2rd2r′(r − r′)M(r)M(r′) = 0 (3.97)

because it is “anti-symmetric” (change r to r′). Finally, we have

1

V

∫
d2rd2r′(r−r′)α(r−r′)β〈M(r)M(r′)〉 =

1

2
δαβ

1

V

∫
d2rd2r′|r−r′|2〈M(r)M(r′)〉

(3.98)
Finally, we get

lim
k→0

〈M(k)M(−k)〉
|k|2 = −1

4

[
1

V

∫
d2rd2r′|r − r′|2〈M(r)M(r′)〉

]
(3.99)

resulting in

K = K0 +
π2K2

0

2

[
1

V

∫
d2rd2r′|r − r′|2〈M(r)M(r′)〉

]
. (3.100)

eqn:BKT:Kfin

where we have defined

K0 =
ρ0

T
, K =

ρ

T
. (3.101)

eqn:BKT:Kdef
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Now,

1

V

∫
d2rd2r′|r − r′|2〈M(r)M(r′)〉 =

1

V
〈
[∑
``′

m`m
′
`|r` − r`′ |2

]
〉 (3.102)

To evaluate the expectation value, write the partition function of the Coulomb
gas (here in d dimensions)

∞∑
Nv=0

∑
{m`}

∫ Nv∏
`=1

d2r`
adc

e−H[{m`,r`}] (3.103)

where Nv runs over different vortex sectors. We will now assume that
Ec is “very large”, so that at most we need to worry about two vortex
configurations (single vortex configuration is immediately killed). Also
the two vortex configurations have only m1 = +1 and m2 = −1 vortex.
Thus

1

V
〈
[∑
``′

m`m
′
`|r` − r`′|2

]
〉 ≈

2
V

∫
ddr1

adc

ddr2

adc
(1×−1)|r1 − r2|2e−2Ec/T+2πK0 ln| r1−r2

ac
|

1 +
∫

ddr1

adc

ddr2

adc
e−2Ec/T+2πK0 ln| r1−r2

ac
| + . . .

≈ −e−2Ec/T
2

ad−2
c

∫
ddr

adc

( |r|
ac

)2−2πK0

= −e−2Ec/T
2Sd
ad−2
c

∫ R

ac

dr

ac

(
r

ac

)d+1−2πK0

(3.104)

Using this with d = 2 in eqn. (3.100), we get

K = K0 − 2π3y2K2
0

∫ R

ac

dr

ac

(
r

ac

)3−2πK0

(3.105)

where
y = e−Ec/T (3.106)

is the vortex fugacity. We have seen that K is like the inverse dielectric
constant. We look, therefore, at 1/K (note 1/K has precisely the meaning
of g in the the NLσM), which for small fugacity becomes2

1

K
=

1

K0

+ 2π3y2

∫ ∞
ac

dr

ac

(
r

ac

)3−2πK0

(3.107)
eqn:BKT:Kinvfin

2We have replaced R by∞ in these discussions.



84 3. BEREZINSKII-KOSTERLITZ-THOULESS (BKT) PHYSICS

This is in the perfect state to apply renormalization group. How does one
do that? The idea is that we treat ac = Λ−1. By changing ac to sac, s > 1, we
are asking what is the effective K if we account for all vortex pairs whose
size is between ac and sac. We interpret,

1

K(s = 1)
=

1

K0

+ 2π3y2(s = 1)

∫ ∞
ac

dr

ac

(
r

ac

)3−2πK(s=1)

(3.108)

where we have replaced K0 by K(s = 1) in the exponent, this is permissi-
ble at low fugacity. Now ask what is the meaning of K(s). This is a coarse
grained stiffness, i. e., effective stiffness seen by “objects (vortices)” that
are larger than sac. In other words, it is the stiffness obtained by “integrat-
ing” out all vortex pairs of size < sac. Thus, we write,

1

K(s)
− 2π3y2(s)

∫ ∞
(sac)

dr

(sac)

(
r

(sac)

)3−2πK(s)

=
1

K0

(3.109)
eqn:BKT:Ks

Note that we can view (sas) = µ−1, and the equation can thus be viewed as
a relationship between “bare” (1/K0) and “renormalized” (1/K(s)) quan-
tities. Note that we have also accounted for the fact the second parameter
in the theory, viz, the vortex fugacity y also flows. An inspection of the last
two equations gives,

y2(s)s−(4−2πK(s)) = y2(1) = e−2Ec/T (3.110)
eqn:BKT:ys

Thus K(s) is the scale dependent coupling constant, and y(s) as the scale
dependent fugacity (related to the cost of injecting a vortex pair of scale
larger than sac.)

We will now write out a Callan-Symanzik like equation to find the RG
flow. Demand,[

1

K(s)
− 2π3y2(s)

∫ ∞
(sac)

dr

(sac)

(
r

(sac)

)3−2πK(s)
]

= 0

=⇒
[
s

d

ds

1

K
− 2π3y2(s)

]

−2π3

2y(s)s
dy(s)

ds
− y2(s)

4− 2πK(s) +
���

���
���

�:0

2π ln(s)K2s
dK−1

ds

∫ ∞
(sac)

dr

(sac)

(
r

(sac)

)3−2πK(s)

= 0

= 0

(3.111)
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which (the term cancelled to zero is proportional to y2, and what is dropped
overall is ∼ y4) using eqn. (3.109) and eqn. (3.110) give us the famous
Kosterlitz-Thouless RG equations

s
d

ds

(
1

K

)
= 2π3y2(s) (3.112)

eqn:BKT:Kflow

s
dy(s)

ds
= (2− πK(s))y(s) (3.113)

eqn:BKT:yflow

The above flow equations have a remarkable feature. There is a “fixed
surface” i e., y = 0 for which (for any value of K) the there is no flow.
Looking at eqn. (3.113) shows that the value of K is crucial in determining
the stability of a point along the y = 0 fixed surface. When (2 − πK) < 0,
then the point is stable, however, for (2 − πK) > 0, the point is unstable.
Thus,

(K, y = 0) =

{
stable fixed point K < Kc

unstable fixed point K > Kc
(3.114)

where
Kc =

2

π
(3.115)

But K corresponds to
K =

ρ

T
=⇒ Tc =

πρ

2
(3.116)

which is tantalizingly similar to eqn. (3.52), except ρ sits here instead of
ρ0! � Change all ` for vortex index to l. Let us look at the physics near
(Kc, 0). Define,

x = (K −Kc) (3.117)

The flow equations can be recast as

dx

d`
= −2π3K2

c y
2 = −8πy2

dy

d`
= −πxy

(3.118)
eqn:BKT:linflow

A strong glare at the equations above yields,

d

d`

[
8y2 − x2

]
= 0 =⇒ 8y2 − x2 = C (3.119)

eqn:BKT:flowcons

where C is a constant. This can be used to deduce the flow as shown in
fig. 3.3.
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y

K −Kc

line of fixed points

C = 0

O

Figure 3.3:
fig:BKT:KtRG
Kosterlitz-Thouless renormalization group flow.

We realize that C is a key parameter that determines the physics, and
is determined by the initial condition the bare fugacity y0 and the bare K0.
If (for reasonably close to O), suppose

C = 8y2
0 − (K0 −Kc)

2 < 0, and K0 −Kc ≥ 0 (3.120)
eqn:BKT:stablebasin

then the RG flow will take this initial point to a point lying on the line of
fixed points (see fig. 3.3). Any other initial point (in the light red region)
will flow off to a point with y → ∞ and K → 0, i. e., a high tempera-
ture fixed point where the fugacity of vortices goes to infinity. The main
finding therefore, is that flow takes the system either to the line of fixed
points or to the high temperature phase, and the C = 0 line (the separa-
trix) plays a major role. If C = 0 with K0 − Kc > 0, the system flows to
O. On the other hand for C = 0 with K0 − Kc < 0, the system flows to
the high temperature state. Thus the point O has one relevant and one ir-
relevant operator around it! It is natural to view O as the critical point that
“separates” as fixed point state with powerlaw correlations from the high
temperature gapped phase.

It turns out that we can squeeze out a lot more physics from the equa-
tions. Given that C < 0 flows the system to a the line of fixed points, and
C > 0 to the gapped high temperature phase, KT� ?Only K had a beau-
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tiful physical idea. They� ?he argued that C can thought of a parameter
like t of the O(N) model (such as defined near eqn. (1.10)). In other words,

C = At (3.121)

where t is the “distance to the transition” and A is a non-universal con-
stant.

Suppose, we start with a system with bare stiffness ρ0 which defines
the “bare” stiffness K0 = ρ0/T and x0 = K0 − Kc and bare fugacity y0.
Suppose, also that y0 is such that

C = 8y2
0 − x2

0 < 0 (3.122)

We see from fig. 3.3 that

x(`→∞) =
√
−C, y(`→∞) = 0 (3.123)

Thus
K(`→∞) = Kc +

√
A
√
|t| (3.124)

The main lesson learnt is that the long wavelength stiffness arriving at
the critical point TBKT from the low temperature side is Kc = 2

π
. We can

get further information by studying the flow of x. Using eqn. (3.119) in
eqn. (3.118), we get

dx

d`
= −8πy2 = −π(C + x2)

=⇒ x(`) =
√
|C|
[

(x0 +
√
|C|) + (x0 −

√
|C|)e−2π

√
|C|`

(x0 +
√
|C|)− (x0 −

√
|C|)e−2π

√
|C|`

] (3.125)

Suppose we start from a regime where x0 is large (low temperature), i. e.,
|C| � x2

0, this means that the fugacity y0 is also large (so that 8y2
0−x2

0 = C),
then for “small `” one has ` ≈ 0 x(`) ≈ x0, while for ` → ∞, we have
x(`) ≈

√
|C|. At what value of ` does the “change take place”. We see

from the expression of x(`) that the condition corresponds to

2π
√
|C|`cross ≈ 1 (3.126)

Thus, the crossover scale factor scross is

scross = e`cross =
ξcross

ac
= e

1

2π
√
A
√
|t| (3.127)
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It is easily shown that when

x(`) =


x0

1 + 2πx0`
, `� `cross

√
|C|
(

1 + 2e−2π
√
|C|`
)

, `� `cross

(3.128)

The fugacity goes as

y(`) =


y0 −

2πx3
0

y0

` , `� `cross

√
|C|
2

e−π
√
|C|` , `� `cross

(3.129)

The physics of the above equations is this. If we view the system on a scale
smaller than ξcross, we will see vortex pair excitations which are governed
by x0 and y0 (which are taken to be large). However, the fantastic things
happen on the longer scales much greater than ξcross. The effective stiff-
ness renormalizes to

√
|C| while the vortex fugacity is expoentially small!

Vortex pairs have become infinitely expensive. Not only does this pro-
vide a clear picture of the physics of the XY model, this also gives a vivid
illustration of the beautiful way in which RG works!

The next question is natural. What if C > 0 with x0 > 0? Fig. 3.3 tells
us that we will flow off to the high temperature gapped phase. Let us
investigate. Here

dx

d`
= −π(C + x2)

=⇒ 1√
|C|

[
tan−1

(
x(`)√
C

)
− tan−1

(
x0√
C

)]
= −π`

(3.130)

Since we have started with x0 > 0, we get that as ` increases, x(`) even-
tually has to become negative. Suppose we start with x0 �

√
C, for this,

tan−1
(
x0√
C

)
≈ π/2. A characteristic ` can be found by demanding that

|x(`)| also becomes large compared to
√
C, thus giving

1√
C

= `corr (3.131)

This leads naturally to the definition of a correlation length

ξ

ac
= e`corr = e

1√
A
√
t (3.132)
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Treating t as the distance to the transition, we see how the correlation
length diverges when the critical point is approached from the high tem-
perature side. While this analysis is very illuminating, the flow takes us
to regimes where the linearized approximation eqn. (3.118) breaks down.
However, we know qualitatively from fig. 3.3 that when C > 0, K(`) → 0
as `→∞.

lim
`→∞

K(`) =

{
Kc C = 0− i. e., t = 0−

0 C = 0+ i. e., t = 0+ (3.133)

This is a truly spectacular result! To see its “spectacularity”, suppose in a
large thermodynamic system, the critical temperature be TBKT (NOT uni-
versal). Then what we find is that if you tune the system to T = T−BKT, then
the renormalized infrared stiffness at this point ρ(T−BKT) is such that

ρ(T−BKT) =
2

π
TBKT (3.134)

Now, if you tune the system to a temperature T = T+
BKT, then the corre-

sponding long wavelength stiffness is

ρ(T+
BKT) = 0 (3.135)

This spectacular prediction made is that the long wavelength stiffness has
a jump discontinuity across the transition! The jump in the siffness, satisfies
a universal relation:

ρ(T−BKT)− ρ(T+
BKT)

TBKT
=

2

π
(3.136)

This spectacular prediction has now been verified in many physical sys-
tems.
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