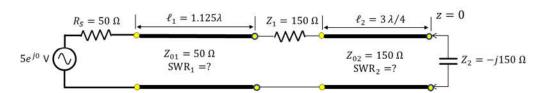
Menoufia University
Faculty of Electronic Engineering
Dept. of Electronics and Electrical Comm. Eng.
Midterm Examination

Third Year

Subject : Microwave Engineering

Course Code: ECE 323 Allowed Time: 1 Hour

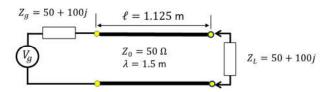

Date : Saturday March 25, 2017

Total Marks : 15 Marks

Name:	Sec:
Score:	
Question 1	of possible 4 points
Question 2	of possible 4 points
Question 3	of possible 5 points
Question 4	of possible 2 points
Total	of possible 15 points
Answer the following questions:	
Question 1: [4 pts.]	
	hat were measured on a lossless transmission line are:
	$\pi z + \pi/6$) + 10 cos(2 $\pi \times 10^8 t + \pi z$)
	$\pi z + \pi/6$) $0.2\cos(2\pi \times 10^8 t + \pi z)$
a. (1 pt.) Determine the voltage phase	or.
b. (1 pt.) Determine the current phase	or. How could you physically interpret the minus sign?
	CC :
c. (1 pt.) Determine the reflection coo	efficient at the load.
d. (1 pt.) Determine the impedance o	f the load.
(- r) =	

Question 2: [4 pts.]

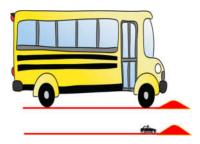
2. Consider the transmission line circuit below. Assume lossless lines.



a. (2 pts.) Find the standing wave ratio on each line.

b. (2 pts.) Find the time-average power delivered to each impedance $Z_1=150~\Omega$ and $Z_2=j150~\Omega$.

Question 3: [5 pts.]


3. Consider the transmission line circuit below. Assume lossless line.

- a. (1 pt.) Find Z_{in} using the Smith chart and show the constant standing wave ratio (SWR) circle.
- b. (1 pt.) Find the power delivered to the load in terms of V_g .
- c. (1 pt.) Find the position of the current maximum nearest the load using Smith chart.
- d. (2 pts.) What minimum length of the transmission line will give maximum power delivery to Z_L ? Explain (use Smith chart). Find the maximum power delivered to the load in terms of V_g .

Question 4: [2 pts.]

I. (1 pt.) What does this picture represent?

II. (1 pt.) Most RF and microwave instruments and coaxial cables have standardized impedance of 50Ω . Briefly state why?