Midterm Examination 2016-2017 Menoufia University : 75 Minutes Time **Faculty of Electronic Engineering** Date : Thursday, April 27, 2017 Electronics and Electrical Commun. Eng. Dept. **Total Marks: 25 Marks Third Year** Instructor: Dr. Ahmed Farghal **Microwave Engineering Course Code: ECE 323** Sec: [] Name:___ ISA, you can ACE this exam!! Think!! Total **ANSWER ALL QUESTIONS** Q1 List out the advantages of Microwave [2 Marks] Q2] Derive an expression for the input impedance of the TL. Hence obtain the input impedance for a lossless line. [4 Marks] Q3] Drive the expression that relates guided wavelength (λ_g) , free space wavelength (λ) and cutoff wavelength (λ_c). [3 Marks]

Q4| Circle the correct answer(s): (show your justification when needed) [11 Marks]

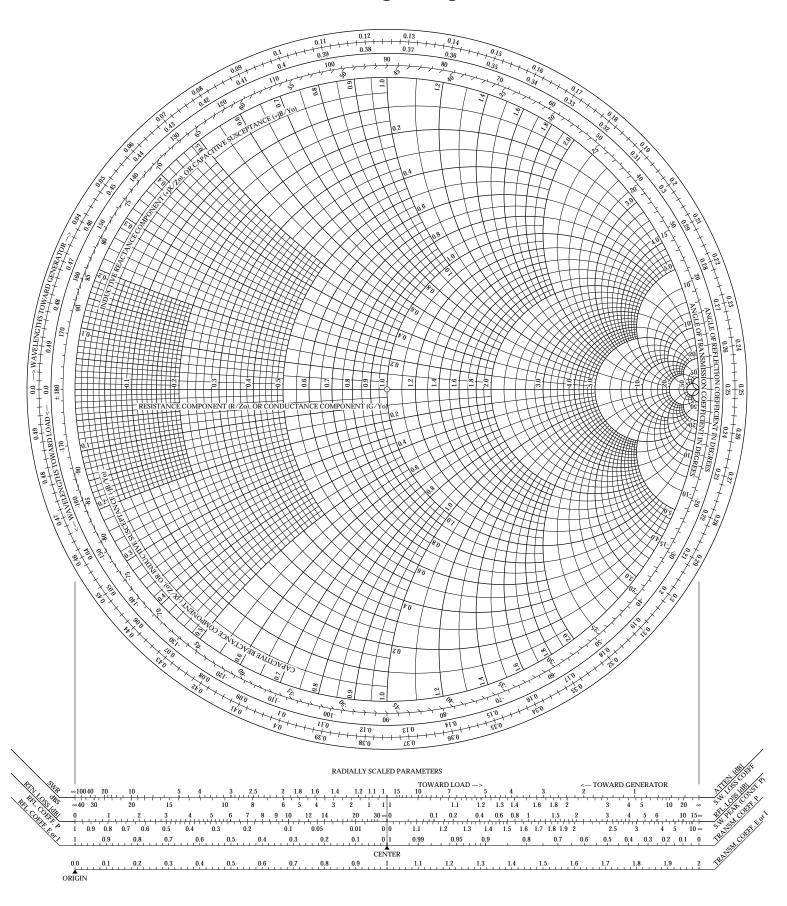
- 1. A lossless TL with return loss 10 dB. The percentage of power that is reflected from the load is
 - (a) 90%
 - (b) 10%
 - (c) 31.622%
 - (d) 68.378%
- 2. A TL at frequency 100 MHz has the following parameters: $R = 1.675 \, [\Omega/m]$, $L = 0.592 \, [\mu H/m]$, $G = 2.12 \times 10^{-4} \, [S/m]$ and $C = 75 \, [pF/m]$. The type of this TL is
 - (a) Lossless TL
 - (b) low-loss TL
 - (c) Lossy TL
 - (d) Distortionless TL
- 3. The cutoff wavelengths (in meter) for the first ten modes of a certain air-filled rectangular waveguide are listed below. Circle the modes that can propagate at operating frequency 30 GHz.

	TE_{10}	TE_{01}	$\overline{\text{TE}_{11}}$	TE_{20}	TE ₀₂	TE_{21}	TE ₁₂	TE ₂₂	TE ₃₀	TE ₀₃
ĺ	0.03	0.015	0.01342	0.015	0.0075	0.01061	0.00728	0.0067	0.01	0.005

- 4. In an air TL, adjacent maxima are found at -12.5 cm and -37.5 cm. The source frequency is
 - (a) 1.5 GHz
 - (b) 600 MHz
 - (c) 300 MHz
 - (d) 1.2 GHz
- 5. A 500 m lossless TL is terminated by a load which is located at A on the Smith chart. If $\lambda = 150$ m, how many voltage maxima exist on the line?

+180°

-150°


- (a) 7
- (b) 6
- (c) 5
- (d) 3
- 6. Which of these is not true of a lossless line?
 - (a) $Z_{in} = -jZ_o$ for a shorted line with $\ell = \lambda/8$.
 - (b) $Z_{in} = j\infty$ for a shorted line with $\ell = \lambda/4$.
 - (c) $Z_{in} = jZ_0$ for an open line with $\ell = \lambda/2$.
 - (d) $Z_{in} = Z_o$ for a matched line.
 - (e) At $\lambda/2$ from a load, $Z_{in} = Z_L$ and repeats for every half-wavelength thereafter.
- 7. The dominant mode in waveguides is characterized by
 - (a) Having propagation constant equal to zero
 - (b) Having phase constant equal to zero
 - (c) Cannot be propagated without the other modes
 - (d) None of the above

- 8. The line impedance of a shorted TL can be
 - (a) Z_0
 - (b) Zero
 - (c) Infinite
 - (d) Negative imaginary
 - (e) Positive imaginary
- 9. The mode of operation of a rectangular waveguide with the following magnetic field component $H_z = H_0 \cos(\pi x/a) \cos(3\pi y/b) e^{-j10z}$ A/m will be
 - (a) TE_{13}
 - (b) TM_{13}
 - (c) TEM₁₃
 - (d) Both a and b
- 10. A car enters a 6 m ×4 m tunnel that can be modeled as an air-filled rectangular waveguide. Which radio band the driver can listen to
 - (a) Long wave radio (148.5 to 283.5 kHz)
 - (b) AM radio (525 to 1705 kHz)
 - (c) Shortwave radio (5.9 to 26.1 MHz)
 - (d) FM radio (87.5 to 108 MHz)
- 11. A rectangular waveguide is filled with dielectric material with $\varepsilon = 2.25\varepsilon_0$ and operates at 24 GHz. The cutoff frequency of a certain TE mode is 16 GHz, the group velocity and wave impedance of the mode are respectively
 - (a) 1.49×10^8 m/s and $187.32~\Omega$
 - (b) 2.68×10^8 m/s and 337.2Ω
 - (c) 1.49×10^8 m/s and 337.2Ω
 - (d) None of these

Q5] A load impedance $Z_L = 25 + j30~\Omega$ is to be matched to a 50 Ω line at a frequency of 500 MHz. Find one solution using an L-section matching network. Plot the resulting circuit with the component values shown. [5 Marks]

The Complete Smith Chart

Black Magic Design

