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1 Complex Scalar field theory

A quick generalization of the free real scalar field theory is obtained by complexifying the field. We will denote
the complex field by upper case Greek symbol, Φ(x). The main contrast with the real scalar field theory
is that the complex scalar field theory will admit an internal symmetry called the global U(1) symmetry
which we will see via Noether’s theorem to lead to a conserved charge. Further we will identify this charge
as the electric charge when we couple the complex scalar to a Maxwell gauge field, Aµ. As usual, the very
first step in the study of any physical system, here in this case the complex scalar field theory, is writing
down the action functional. Since the action must be real, the action is constrained to be the following,

I
[
Φ(x),Φ†(x)

]
=

∫
d4x

[
(∂µΦ)

†
∂µΦ− V

(
Φ†Φ

)]
. (1)

Here Φ† is the complex conjugate of Φ. For simplicity we take, V
(
Φ†Φ

)
= m2Φ†Φ, which as expected will

give rise to a free theory i.e. one with equations of motion linear in Φ or Φ†. The classical equation of motion
for the complex field theory are,

∂µ

(
∂L

∂ (∂µΦ)

)
− ∂L
∂Φ

= 0 = ∂µ

(
∂L

∂ (∂µΦ†)

)
− ∂L
∂Φ†

.

Plugging the expression for L from (1) is same as that of the real scalar field, i.e. the Klein-Gordon equation,(
∂2 +m2

)
Φ =

(
∂2 +m2

)
Φ† = 0.

Upon rewriting this complex scalar field into it’s real and imaginary components,

Φ =
φ1 + i φ2√

2
,Φ† =

φ1 − i φ2√
2

,

we find out that the complex scalar field theory is a theory of two non-interacting real scalar field theories.
This is because on splitting the field into its real and imaginary components, the action splits into two pieces
as well,

I
[
Φ(x),Φ†(x)

]
=

∫
d4x

[
(∂µΦ)

†
∂µΦ−m2Φ†Φ

]
,

=

∫
d4x

(
1

2
∂µφ1 ∂

µφ1 −
1

2
m2φ21

)
+

∫
d4x

(
1

2
∂µφ2 ∂

µφ2 −
1

2
m2φ22

)
.
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1.1 Global U(1) Symmetry of the complex field theory

One can easily check that the complex scalar field theory action Eq. (1) is invariant under multiplication by
a constant complex phase factor ei α,

Φ→ Φ′ = e−i αΦ,

Φ† → Φ′† = ei αΦ†, (2)

where α ∈ R. Since a complex phase is unitary i.e. the complex conjugation is also the inverse,(
e−i α

)†
=
(
e−i α

)−1
,

such phases are also called U(1) factors (U stands for Unitary matrix and since a number is a 1× 1 matrix,
U(1) is unitary matrix of size 1×1). Since this symmetry transformation does not touch spacetime but only
changes the fields (configuration space variables), such a symmetry is called an internal symmetry. Also
note that since α is a constant i.e. not a function of spacetime, it is a global symmetry (global = same
everywhere = independent of spacetime location).

Check: Under the U(1) symmetry Eq. (2), the mass term is obviously invariant,

Φ′†Φ
′

=
(
ei αΦ†

) (
e−i αΦ

)
= Φ†Φ

and this is true whether α is a constant or a function of spacetime i.e. α(x). Now let’s look at the kinetic
term, (

∂µΦ†
)

(∂µΦ)→
(
∂µΦ′†

)
(∂µΦ′) = ∂µ

(
ei αΦ†

)
∂µ
(
e−i αΦ

)
,

= ei α
(
∂µΦ†

)
e−i α (∂µΦ)

=
(
∂µΦ†

)
(∂µΦ) .

So this kinetic term in the action is also invariant because α is a constant and the derivative does not act
on it. If α was a function of spacetime, α = α(x), the derivative would have acted on it and the term would
not be invariant. Incidentally, a spacetime dependent phase α(x) is called a local U(1) transformation.

2 Symmetries: Noether’s theorem & construction of charges

Recall that Noether’s theorem states that whenever a physical system has an continuous global symmetry
i.e. when the the action functional of the system is invariant under some transformation rules of the coor-
dinates and/or configuration space variables and the symmetry transformation parameter takes on values
continuously on the real line and the parameter remains same at all points in spacetime, then there exists a
conserved charge corresponding to that symmetry. In this section, we will use Noether’s theorem to construct
the conserved charges for the free scalar system. First we will look at spacetime symmetries such as Lorentz
and translation symmetries. Since the analysis of spacetime symmetries is virtually identical for real and
complex scalar field theories, we will be content to consider the real scalar field theory. The theory of the
real scalar field, ϕ(x) can be described by the action,

I [ϕ(x)] =

∫
d4x L,

where the Lagrangian L is a function of the scalar, ϕ(x) and it’s spacetime derivatives ∂µϕ(x),

L = L (ϕ(x), ∂µϕ(x)) = L =
1

2
∂µϕ ∂

µϕ− V (ϕ(x))
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The integration range is over all space and time. In particular, for the free scalar, the Lagrangian can be
taken to be,

L =
1

2
∂µϕ ∂

µϕ− 1

2
m2ϕ2. (3)

This form is dictated by Lorentz invariance i.e. the Lagrangian density must be Lorentz scalar. m is
a Lorentz invariant quantity with the dimensions of mass (or energy). (Upon quantizing the system, the
parameter, m will turn out to be the mass of the scalar field quanta/particles).

The symmetries/invariances of the real scalar field action are:

• Lorentz invariance x→ x′ = Λx, ϕ(x)→ ϕ′(x′) = ϕ(x).

• Translation invariance x→ x′ = x+ a, ϕ(x)→ ϕ′(x′) = ϕ(x).

• Discrete internal symmetry, ϕ→ ϕ′ = −ϕ. (Only if the lagrangian contains even powers of ϕ).

Checks:

• Lorentz invariance is rather obvious because most terms in the action is Lorentz invariant, d4x, m2,
ϕ2. Even the kinetic term, ∂µϕ ∂

µϕ, is because the Lorentz index µ is contracted, viz:

∂µϕ(x)→ ∂′µϕ
′(x′) = Λµ

ν ∂νϕ(x),

∂µϕ(x) ∂µϕ(x)→ ∂′µϕ
′(x′) ∂′µϕ′(x′) = Λµ

ν ∂νϕ(x) Λµ α∂
αϕ(x)

= (Λµ
ν) (Λµ α) ∂νϕ(x) ∂αϕ(x)

= δνα ∂νϕ(x) ∂αϕ(x)

= ∂νϕ(x) ∂νϕ(x).

Thus the action

I [ϕ′(x′)] =

∫
d4x′

[
1

2
∂′µϕ

′(x′)∂′µϕ′(x′)− 1

2
m2ϕ2(x)

]
=

∫
d4x

[
1

2
∂µϕ(x)∂µϕ(x)− 1

2
m2ϕ2(x)

]
= I [ϕ(x)] ,

remains invariant.

• Translation invariance is also obvious because the action integral being defined over all space and time
i.e ranges of integration being (−∞,∞), is independent of the origin of coordinates and there is no
explicit dependence on the coordinates, x. Recall that under translations, namely,

x→ x′ = x+ a,

the field ϕ transforms as,
ϕ′(x′) = ϕ(x),

What about the kinetic piece containing terms such as ∂µϕ. Such a term seems to care about the
spacetime coordinate through the derivative, ∂µ = ∂

∂xµ . Actually even this derivative is independent
of the shift in origin because under a shift of origin of coordinates,

x→ x′ = x+ a,

Conversely,
x = x′ − a
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the derivative transforms as

∂

∂xµ
→ ∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
,

=
∂ (x′ν − aν)

∂x′µ
∂

∂xν

=
∂x′ν

∂x′µ
∂

∂xν

= ∂νµ
∂

∂xν

=
∂

∂xµ
.

So the derivative remains unchanged. (Here since a is a constant its derivative vanishes, and we get
∂(x′ν−aν)

∂x′µ = ∂x′ν

∂x′µ ).

• Discrete internal symmetry such as ϕ → ϕ′ = −ϕ is also obvious when the Lagrangian contains even
powers of ϕ. However as they are discrete (non-continuous) and do not obey Noether’s theorem and
they will not give rise to conserved charges.

In the case of spacetime symmetries such as Lorentz transformations and translations, we see that the
parameters Λµ ν and aµ are indeed constants and not functions of spacetime i.e. these are global symmetries.
So Noether’s theorem applies in these cases and tells us that there must be conserved charges. Here we obtain
the expressions for those charges using the so called “Noether procedure”. In a nutshell, the algorithm
for extracting Noether charges is as follows:

1. First make the global symmetry parameter, say ε, infinitesimal. This is allowed because the symmetry
parameter takes values on some continuous segment of the real line which includes the origin. In case
of translations we will take the shift parameter, aµ to be infinitesimal, and in case of rotations the angle
of rotation, θ is to be taken infinitesimal. When this done, in all subsequent steps of the procedure we
will only keep terms which are up to O(ε), i.e. linear order in the infinitesimal symmetry parameter.
Higher order terms i.e. O

(
ε2
)

will be dropped.

2. Next we will temporarily assume that the symmetry parameter ε, is a function of spacetime, i.e.
ε = ε(x). In case of Lorentz transformations, we will temporarily make Λµ ν = Λµ ν(x) = δµν + ωµ ν(x)
and in the case of translations aµ = aµ(x). Then (to lowest order), the change in the action integral
should be,

δI = −
∫
d4x (∂µε(x)) jµ +O

(
ε2
)
.

Again for example for translations one must have the change in action,

δI = −
∫
d4x (∂µa

ν(x)) θµ ν +O
(
a2
)
,

while for Lorenz transformations we must have,

δI = −
∫
d4x (∂ρω

µ
ν(x)) Mµ

νρ +O
(
ω2
)
.

This form is consistent with the our expectation for a global symmetry. Right now, the symmetry
parameter is not global since we have temporarily assumed it (them) to be functions of spacetime, and
this is NOT a symmetry of the action, the hence action must have a non-vanishing change. However,
in the special case when a and ω are constants these expressions must vanish as the action is supposed
to invariant under the global/constant changes which is a symmetry of the system.
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3. From the expression for the δI, read off the companion coefficient terms i.e. Tµ ν or Mµ
νρ which are

some functions of the field and it’s derivatives. These are the conserved Noether currents! They will
obey a continuity type equation when the equations of motion hold. This can be inferred from the
above expressions for δI by a simple integration by parts and abandoning the total derivative term
(we can abandon this term under the assumption that the surface term goes to zero at infinity). For
example, for the translation invariance:

δI = −
∫
d4x (∂µa

ν(x)) θµ ν

= −
∫
d4x ∂µ (aν(x) θµ ν) +

∫
d4x (∂µθ

µ
ν) aν(x)

=

∫
d4x (∂µθ

µ
ν) aν(x).

where the total derivative gives rise to a surface term at infinity which is assumed to vanish1. More
generally (not just for translations),

δI = −
∫
d4x (∂µε(x)) jµ =

∫
d4x ε(x) ∂µj

µ.

4. Use the variational principle to demand the change in the action to vanish around classical config-
urations (whereby the equation of motion holds). The change of the action might not vanish when
the symmetry parameter is turned local (function of spacetime) but now since we are talking about
configurations around the equation of motion, the variation of the action has to vanish for arbitrary
variations, including the case when the variation happens to be with the symmetry parameter being
local. Thus when equations of motion hold, one has

δI = 0,

or, ∫
d4x ε(x) ∂µj

µ = 0

The only way this integral can vanish for arbitrary function ε(x) is when rest of the integrand vanishes,
i.e.

∂µj
µ = 0.

This is nothing but the continuity equation for a current density, jµ! We know from past experience
that it represents a conservation law. More concretely say for translations, one has when the equation
of motion holds,. aν becomes a constant, it can be pulled out of the integral and we have the expression,

δI = aν
∫
d4x (∂µθ

µ
ν) aν(x) = 0.

which immediately leads to,
∂µθ

µ
ν = 0,

the continuity equation for a current density. This current density corresponding to translation/shift
symmetry of a field theory is called the Stress-Energy-Momentum tensor and is denoted by θµ ν or
raising both indices, θµν . One can explicitly check, using the equations of motion of the fields, that
the above continuity equation indeed holds.

1If this boundary term does not vanish even with the use of boundary conditions, i.e.
∫
d4x ∂µ (aν(x) θµ ν) =∫

S∞ dµS (aν(x) θµ ν)��→0, they will modify the definition of the Noether charge. This is actually not very rare, in fact in
general relativity this is a commonplace scenario.
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5. Construct the Noether charge by performing the spatial volume integral

Q =

∫
d3x j0.

where jµ is a conserved Noether current-density. This follows easily from the continuity equation.

∂µj
µ = 0⇒ ∂j0

∂t
+ ∇ · j = 0.

Which implies,
∂j0

∂t
= −∇ · j.

Taking a (spatial) volume integral of both sides,∫
d3x

∂j0

∂t
= −

∫
d3x (∇ · j) .

Now in the LHS we swap the space-integral and time derivative,
∫
d3x ∂j0

∂t = d
dt

(∫
d3x j0

)
, one the

RHS we convert it to a surface integral at spatial infinity using Gauss divergence theorem,

d

dt

(∫
d3x j0

)
= −

∫
S∞

dS n̂ · j.

Using the right boundary conditions the surface term at spatial infinity on the RHS vanishes and we
leads to the conservation law,

d

dt


∫
d3x j0︸ ︷︷ ︸
=Q

 = 0.

For example, for the case of translations, the conserved Noether charge is,

Pν =

∫
d3x θ0 ν ,

which are nothing but the linear momentum 4-vector.

2.1 The “Stress-Energy-Momentum” tensor for the (real) scalar field theory

We use the Noether procedure to extract the stress-energy-momentum tensor for the (real) scalar field theory.
First step is to turn the shift parameter infinitesimal. Then we set the infinitesimal symmetry parameter to
not be constant (global), but instead a function of spacetime,

aµ = aµ(x).

So we have new coordinates,
x→ x′µ = xµ + aµ(x).

The Jacobian matrix components for the change of variables, x→ x′ are,

Jµ ν =
∂x′µ

∂xν
= δµν + ∂νa

µ,

i.e. it is a sum of the identity matrix and a small change, ∂νa
µ. Hence to first order of the shift, the Jacobian

determinant is,

|J | = 1 + trace(∂νa
µ)

= 1 + ∂ρa
ρ. (4)
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The derivatives transform like,

∂µ → ∂′µ =
∂xν

∂x′µ
∂ν

=
(
δνµ − ∂µaν

)
∂ν

= ∂µ − ∂µaν ∂ν . (5)

Now let’s look at the change in ϕ and it’s derivatives, ∂µϕ. We have,

ϕ′(x′) = ϕ(x),

while,

∂′µϕ
′(x′) =

∂xν

∂x′µ
∂νϕ(x)

= ∂µϕ(x)− ∂µaν ∂νϕ(x). (6)

Now we are ready to compute the transformed action after this spacetime dependent translation, a(x) using
the transformation equations (4-6) :

I [ϕ′(x′)] =

∫
d4x′ L

(
ϕ′(x′), ∂′µϕ

′(x′)
)

=

∫
d4x |J | L (ϕ(x), ∂µϕ(x)− ∂µaν ∂νϕ(x))

=

∫
d4x (1 + ∂ρa

ρ)

[
L (ϕ(x), ∂µϕ(x))− ∂µaν ∂νϕ(x)

∂L
∂ (∂µϕ(x))

+O(a2)

]
=

∫
d4x

[
L (ϕ(x), ∂µϕ(x)) + ∂ρa

ρ L (ϕ(x), ∂µϕ(x))− ∂µaν ∂νϕ(x)
∂L

∂ (∂µϕ(x))
+O(a2)

]
= I [ϕ(x)] +

∫
d4x

[
∂ρa

ρ L (ϕ(x), ∂µϕ(x))− ∂µaν ∂νϕ(x)
∂L

∂ (∂µϕ(x))

]
+O(a2),

This implies, to first order in a

δI ≡ I [ϕ′(x′)]− I [ϕ(x)] =

∫
d4x

[
∂ρa

ρ L (ϕ(x), ∂µϕ(x))− ∂µaν ∂νϕ(x)
∂L

∂ (∂µϕ(x))

]
=

∫
d4x ∂µa

ν

[
δµνL (ϕ(x), ∂µϕ(x))− ∂νϕ(x)

∂L
∂ (∂µΦ(x))

]
= −

∫
d4x ∂µa

ν θµ ν ,

where we have identified the conserved current,

θµ ν ≡
∂L

∂ (∂µϕ(x)
∂νϕ(x)− δµνL.

Raising the ν-index we arrive at the expression of the canonical stress-energy-momentum tensor,

θµν =
∂L

∂ (∂µϕ(x)
∂νϕ(x)− ηµνL,

= (∂µϕ) (∂νϕ)− ηµνL. (7)
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We note couple of things about this canonical stress tensor,

• One can go ahead and check, using the equations of motion, that this is indeed conserved that it
satisfies the continuity equation, ∂µθ

µν = 0,

∂µθ
µν = ∂µ (∂µϕ) (∂νϕ)− ηµν∂µL

=
(
∂2ϕ

)
(∂νϕ) + (∂µϕ) (∂µ∂

νϕ)− ∂νL

We simplify the first term using the equations of motion,

∂2φ = −∂V
∂ϕ

,

⇒
(
∂2ϕ

)
(∂νϕ) = −∂V

∂ϕ
∂νϕ

= −∂νV

while the second term can be rewritten as

(∂µϕ) (∂µ∂
νϕ) = (∂µϕ) ∂ν (∂µϕ) = ∂ν

(
1

2
∂µϕ ∂

µϕ

)
Thus, the first two terms add up to,(

∂2ϕ
)

(∂νϕ) + (∂µϕ) (∂µ∂
νϕ) = −∂νV + ∂ν

(
1

2
∂µϕ ∂

µϕ

)
= ∂ν

(
1

2
∂µϕ ∂

µϕ− V
)

= ∂νL,

which cancels the third term, giving us,
∂µθ

µν = 0.

• The conserved charges corresponding to the current are nothing but the components of the four-
momentum, Pµ, i.e.

P ν =

∫
d3x θ0ν .

Let’s evaluate the 00-component i.e. energy density, θ00,

θ00 =
∂L

∂ (∂0ϕ(x)
∂0ϕ(x)− η00L

=
(
∂0ϕ

)2 − L,
=

(
∂0ϕ(x)

)2 − 1

2
∂µϕ ∂

µϕ+ V (ϕ),

= (∂0ϕ)
2 − 1

2
(∂0ϕ)

2
+

1

2
(∇ϕ)

2
+ V (ϕ),

=
1

2
(∂0ϕ)

2
+

1

2
(∇ϕ)

2
+ V (ϕ).

This expression being a sum of squares is manifestly positive. This is reassuring because we would
want a free system to have energy positive semi-definite.
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• This tensor is symmetric between the indices, µ, ν. This is only true for scalar fields. For the Maxwell
field, we will see that the corresponding stress tensor will not be symmetric.

• Note that the stress-energy-momentum is non-unique to some extent. One can always add a term like,
∂λB

λµν where B is a tensor that has the following antisymmetric properties,

Bλµν = −Bµλν .

The new quantity2,
Tµν = θµν + ∂λB

λµν

is also conserved,
∂µT

µν = ∂µθ
µν + ∂µ∂λB

λµν = 0.

For the Maxwell field, one can exploit this ambiguity to define a stress tensor which is symmetric in
the indices, µ and ν,

Tµν = T νµ.

Before we do that we need to first obtain the expression for the charges conserved as a result of Lorentz
invariance.

Homework: Follow the Noether procedure to construct the conserved charges for the scalar
field theory for symmetry under Lorentz transformations,

xµ → x′µ = Λµ ν x
ν .

2For those who are interested there is a special “symmetrizing improvement term”, Bλµν is called the Belinfante-Rosenfield
term after the two people who independently arrived at the expression. For the Maxwell field we will see that the variation of
action under Lorentz transformation automatically gives us the improved symmetric stress tensor.
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