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Ampere’s Circuital Law

2

Ampere’s Circuital Law states that the line integral of H about any 

closed path is exactly equal to the direct current enclosed by that 

path.

In electrostatics problems that featured a lot of symmetry we were

able to apply Gauss’s Law to solve for the electric field intensity

much more easily than applying Coulomb’s Law.

Likewise, in magnetostatic problems with sufficient symmetry we

can employ Ampere’s Circuital Law more easily than the Law of

Biot-Savart.
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Ampere’s Law Applied to a 

Long Wire

3



Choosing path a, and integrating H 

around the circle  of radius  gives 

the enclosed current, I:

so that: as before.

Symmetry suggests that H will be circular,

constant-valued at constant radius, and

centered on the current (z) axis.

In the figure, the integral of H about closed paths a and b gives the

total current I, while the integral over path c gives only that

portion of the current that lies within c.
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Coaxial Transmission Line

4

.

In the coax line, we have two concentric 

solid conductors that carry equal and 

opposite currents, I.

The line is assumed to be infinitely long, 

and the circular symmetry suggests that 

H will be entirely  - directed, and will 

vary only with radius .

Our objective is to find the magnetic 

field  for all values of 
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Field Between Conductors

5

The inner conductor can be thought of as made up of a

bundle of filament currents, each of which produces the

field of a long wire.  

Consider two such filaments, located at the same

radius from the z axis, , but which lie at

symmetric  coordinates, and -Their field

contributions superpose to give a net H

component as shown.

The same happens for every pair of

symmetrically-located filaments, which taken as a

whole, make up the entire center conductor.

The field between conductors is thus found to be 

the same as that of filament conductor on the z axis 

that carries current, I.  Specifically:

a < < b
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Field Within the Inner Conductor

6

With current uniformly distributed inside the conductors, the H can be assumed circular 

everywhere.

Inside the inner conductor, and at radius we again have:

But now, the current enclosed is

so that or finally:
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Field Outside Both Conducors

7

Outside the transmission line, where 𝜌 > 𝑐,

no current is enclosed by the integration path,

and so

0

As the current is uniformly

distributed, and since we have

circular symmetry, the field would

have to be constant over the

circular integration path, and so it

must be true that:
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Field Inside the Outer 

Conductor

8

Inside the outer conductor, the enclosed current consists of that

within the inner conductor plus that portion of the outer conductor

current existing at radii less than 

Ampere’s Circuital Law becomes

..and so finally:
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Magnetic Field Strength as a Function 

of Radius in the Coax Line

9

Combining the previous results, and assigning dimensions as 

shown in the inset below, we find:
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Magnetic Field Arising from a 

Current Sheet

10

For a uniform plane current in the y direction, we expect an x-

directed H field from symmetry.

Applying Ampere’s circuital law to the path 1−1′−2′−2−1 , we

find:
or

In other words, the magnetic field is discontinuous across the

current sheet by the magnitude of the surface current density.
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Magnetic Field Arising from a 

Current Sheet

11

If instead, the upper path is elevated to the line between 3 and 3′, the

same current is enclosed and we would have

𝐻𝑥3 − 𝐻𝑥2 = 𝐾𝑦 from which we conclude that 𝐻𝑥3 = 𝐻𝑥1

and

so the field is constant in each region (above and below the 

current plane)

By symmetry, the field above the sheet must

be the same in magnitude as the field below

the sheet. Therefore, we may state that
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Magnetic Field Arising from a 

Current Sheet

12

The actual field configuration is shown below, in which magnetic field 

above the current sheet is equal in magnitude, but in the direction 

opposite to the field below the sheet.

The field in either region is found by the cross product:

where aN is the unit vector that is

normal to the current sheet, and

that points into the region in

which the magnetic field is to be

evaluated.
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Magnetic Field Arising from 

Two Current Sheets

13

Here are two parallel currents, equal and opposite, as you would find

in a parallel-plate transmission line. If the sheets are much wider

than their spacing, then the magnetic field will be contained in the

region between plates, and will be nearly zero outside.

K1 = -Ky ay

K2 = -Ky ay

Hx1 (z < -d/2 )

Hx1 (-d /2 < z < d/2 )

Hx2 (-d /2 < z < d/2 )

Hx2 (z < -d/2 )

Hx1 (z > d/2 )

Hx2 (z > d/2 )

These fields cancel for current 

sheets of infinite width.

These fields cancel for current sheets of 

infinite width.

These fields are equal and add to give

H = K x aN    (-d/2 < z < d/2 )

where K is either K1 or K2
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Current Loop Field

14

Using the Biot-Savart Law, we previously found the magnetic field

on the z axis from a circular current loop:

We will now use this result as a building block to construct the

magnetic field on the axis of a solenoid -- formed by a stack of

identical current loops, centered on the z axis.
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On-Axis Field Within a Solenoid

15

We consider the single current loop field as a differential contribution to the

total field from a stack of N closely-spaced loops, each of which carries

current I. The length of the stack (solenoid) is d, so therefore the density of

turns will be N/d.

Now the current in the turns within a 

differential length, dz, will be

z

-d/2

d/2

so that the previous result for H from a single loop:

now becomes:

in which z is measured from the center

of the coil, where we wish to evaluate

the field.

We consider this as our differential “loop current”
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Solenoid Field, Continued

16

z

-d/2

d/2

The total field on the z axis at z = 0 will be the sum of the field

contributions from all turns in the coil -- or the integral of dH over

the length of the solenoid.
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Approximation for Long Solenoids 

17

z

-d/2

d/2

We now have the on-axis field at the solenoid midpoint (z = 0):

Note that for long solenoids, for which

𝑑 ≫ 𝑎, the result simplifies to:

(           )

This result is valid at all on-axis positions deep within long coils --

at distances from each end of several radii.  
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Another Interpretation: 

Continuous Surface Current

18

The solenoid of our previous example was assumed to have many tightly-wound 

turns, with several existing within a differential length, dz.   We could model such 

a current configuration as a continuous surface current of density K = Ka a A/m.

Therefore:

In other words, the on-axis field magnitude near the 

center of a cylindrical current sheet, where current 

circulates around the z axis, and whose length is 

much greater than its radius, is just the surface 

current density. 

d/2

-d/2
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Solenoid Field -- Off-Axis

19

To find the field within a solenoid, but off the z axis, we apply

Ampere’s Circuital Law in the following way:

The illustration below shows the solenoid cross-section, from a

lengthwise cut through the z axis. Current in the windings flows in

and out of the screen in the circular current path.

Each turn carries current I. The magnetic field along the z axis is NI/d

as we found earlier.
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Application of Ampere’s Law

20

Applying Ampere’s Law to the rectangular path shown below leads

to the following:

Where allowance is made for the existence of a 

radial H component, 𝐻𝜌
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Radial Path Segments

21

The radial integrals will now cancel, because they are oppositely-

directed, and because in the long coil, 𝐻𝜌 is not expected to differ

between the two radial path segments.
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Completing the Evaluation

22

What is left now are the two z integrations, the first of which we can

evaluate as shown. Since this first integral result is equal to the

enclosed current, it must follow that the second integral -- and the

outside magnetic field -- are zero.
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Finding the Off-Axis Field

23

The situation does not change if the lower z-directed path is raised

above the z axis. The vertical paths still cancel, and the outside field

is still zero. The field along the path A to B is therefore NI/d

as before.

Conclusion:  The magnetic field within a long solenoid is approximately constant throughout the coil 

cross-section, and is Hz = NI/d.
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24

Thank you


