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Toroid Magnetic Field

Lecture 3

A toroid is a doughnut-shaped set of windings around a core material. The cross-section could be
circular (as shown here, with radius a) or any other shape.

Below, a slice of the toroid is shown, with current
emerging from the screen around the inner periphery
(in the positive z direction). The windings are modeled
Zz axis as N individual current loops, each of which carries current I.
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so that.

%H°dL - 27TpH¢ = lencl = NI
C

Ampere’ s Law as Applied to a Toroid

Ampere’ s Circuital Law can be applied to a toroid by taking a closed loop integral
around the circular contour C at radius p. Magnetic field H is presumed to be circular,
and a function of radius only at locations within the toroid that are not too close to the
individual windings. Under this condition, we would assume:

H=H¢a¢

This approximation improves as the density of turns gets higher Ay
(using more turns with finer wire).

Ampere’ s Law now takes the form:

“ee

Hy

NI

=5 (po —a < p<po+a)
mp

Performing the same integrals over contours drawn
in the regions p < po —a or p > po + a will
lead to zero magnetic field there, because no current
Is enclosed in either case.




Surface Current Model of a Toroid
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Consider a sheet current molded into a doughnut shape, as shown.
The current density at radius po — @ crosses the xy plane in the z
direction and is given in magnitude by K,

Ampere’ s Law applied to a circular contour C inside the
toroid (as in the previous example) will take the form:
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f H-dL = 27TPH¢ = lepel = 27T(p0 _a)Ka
C

leading to...

H b= ——— K a inside the toroid.... and the field is zero outside as before.
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Ampere’ s Law as Applied to a Small Closed Loop.

Consider magnetic field H evaluated at the point
shown in the figure. We can approximate the field
over the closed path 1234 by making appropriate
adjustments in the value of H along each segment.

The objective is to take the closed path integral

and ultimately obtain the point form of Ampere’ s Law.
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Approximation of H Along One Segment

Along path 1-2, we may write: H=H,=

(H-AL)j_» = H, 12Ay

HxO ax+]{y(] ay+%0 a,
P\
Ax \.
> 2
Ay

And therefore: . 10 Hy
(H-AL);» = (HyO + EWAX) Ay
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The contributions from the front and back sides will be:

Contributions of y-Directed Path Segments

Note the path directions as specified in the figure, and
how these determine the signs used .

This leaves the left and right sides.....

Z
_ 10H A
i (H-AL), o = | Hy + - ——=Ax ) (Ay) 4 \ 3
2 Ox \ <
Ax [
The contribution from the opposite side is:
16H 1 Ay 2
H-AL)s_4 = [ Hyo — =—2Az | (-A
( )3—4 (yO 2 O 33)( y) >y
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Contributions of x-Directed Path Segments

Along the right side (path 2-3):
H= HO =Hx0 ax+]{y(] ay+%0 a,

z

, 10H A
(H-AL)y_3 = ( Hyo+ s——Ay | (—Az) 4 \ 3

2 Oy \ <
Ax [
...and the contribution from the left side (path 4-1) is:
1 > 2

: 10H Ay

(H . AL)4_1 = (Hm() — 5 ayx Ay) (Ail?) > )

The next step is to add the contributions of all four sides to find the closed path integral:
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Net Closed Path Integral

The total integral will now be the sum:

j( H.dL = (H-AL),_s+ (H-AL)s_y + (H- AL);_4 + (H- AL),_,

and using our previous results, the becomes:

0H,

oH
fH-dL = ( Y
ax

dy

)AxAy

H=H,=Hya,+H,a,+ Hy,a,

X

zZ
A \
4 -— 3
Ax \.
P
1 Ay 2
>y




Relation to the Current Density
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By Ampere’ s Law, the closed path integral of H is equal to the enclosed current, approximated in
this case by the current density at the center, multiplied by the loop area:

T . (0H, 0H, ,
< H-dL = — — AxAy = J,AxAy
% 0x dy
LL
@ Dividing by the loop area, we now have:
E z H=H0=Hx0ax+lfy(}ay+HéOaz
< A
o JH-dL . 9H, 9H, .
AxAy 0x dy )

The expression becomes exact as the loop area

approaches zero: 1

: H.-dL 0H OH >y

lim 55 = 4 ==,

Az, Ay—0 AzAy ox Oy




Other Loop Orientations
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The same exercise can be carried with the rectangular loop in the other two orthogonal orientations.
The results are:

©

% Loop in yz plane: i § H - dL OH., 8Hy J
. 11m —_— = — p—

L Ay, Az—0 AyAZ 8y 0z v

g

<

a Loop in xz plane: lim ng_I—dL — OH, _ OH., = J,

Az, Ax—0 AzAx 0z ozx

Loop in lane Iim J . = Y o J
N X : 1 e — —
: re Az, Ay—0 ACUA?J ox 3?J ©

This gives all three components of the current density field.
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Curl of a Vector Field

The previous exercise resulted in the rectangular coordinate representation of the Curl of H.

In general, the curl of a vector field is another field that is normal to the original field.

The curl component in the direction N, normal to the plane of the integration loop is:

) 55 H-dL
(curl Hyy = llm ——
ASy—0  ASy

where ASy is the planar area enclosed by the closed line integral.

The direction of N is taken using the right-hand convention: With fingers of the right hand oriented
in the direction of the path integral, the thumb points in the direction of the normal (or curl).



Curl in Rectangular Coordinates
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Assembling the results of the rectangular loop integration exercise, we find the vector field
that comprises curl H:

T oH, 0H, oH, O0H, 0H, 0H,
< curl H = — — )a, + — a, + — a,
= ay 0z 0z ox ) - dx ay
i
g An easy way to calculate this is to evaluate the following determinant:
e
<
= a, a, a,
H ad d ad
W= 3y 3z
H, H, H,

which we see is equivalent to the cross product of the del operator with the field:

curl H=V xH




Curl in Other Coordinate Systems
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...a little more complicated!

Vo (LOH_BH\ o (OH, BH)
p 0¢p 0z 0z ap

.\ ( 13(pHy)  10H,

——— Ja, (cylindrical)
p dp  p 8¢) )
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1 0(Hysinf)  oHy | 1 0H, 9(rHy)
VxH= — — a + —| — — ay
rsinf a6 L) r \ sinf d¢ ar
1 /0(rH, oH,
+ ;( (grg) — aer)a¢ (spherical)

Fall 2019

Look these up as needed....




Visualization of Curl
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Consider placing a small “paddle wheel” in a flowing stream of water, as shown below. The wheel
axis points into the screen, and the water velocity decreases with increasing depth.

The wheel will rotate clockwise, and give a curl component that points into the screen (right-hand rule).
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River bed _i’

Positioning the wheel at all three orthogonal orientations will yield measurements of
all three components of the curl. Note that the curl is directed normal to both the field
and the direction of its variation.



Another Maxwell Equation
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It has just been demonstrated that:

— oH oH oH . oH.

= carl H=V xH = t— —L)a, + — — )a,
2 ay 07 07 0x

(v}

L oH oH

2 +(ay_ ax)azz"

£ . Y
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.....which is in fact one of Maxwell’ s equations for static fields:

VxH=]

This is Ampere’ s Circuital Law in point form.
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....and Another Maxwell Equation
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We already know that for a static electric field:

©

i

= fE-dL =0
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< This means that: VXE=0 (applies to a static electric field)
a

Recall the condition for a conservative field: that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has zero curl at all points over which the field is defined.




Curl Applied to Partitions of a Large Surface
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Surface S is paritioned into sub-regions, each of small area A S

S .

= The curl component that is normal to a surface element can
S be written using the definition of curl:
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= $H-dLxs .

< = (VxH)-ay

5 AS

or.

fH-dLAS = (VxH)-ayAS =(V xH)-AS

We now apply this to every partition on the surface, and add the results....
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Adding the Contributions
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Cancellation here:

We now evaluate and add the curl contributions
from all surface elements, and note that
adjacent path integrals will all cancel!

This means that the only contribution to the
overall path integral will be around the outer
periphery of surface S.
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No cancellation here:

Using our previous result, we now write:

Z fH-dLASi Z V x H-ayAS

all surface all surface
elements elements



Stokes’ Theorem
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We now take our previous result, and take the limit as AS — 0

[ :
= E j{H-dLAS = g V xH-ayAS
E all surface all surface
LL elements elements
kot ~ ~ ~ ~ ~ ~
E In the limit, this side In the limit, this side
<_ becomes the path integral becomes the integral
) of H over the outer perimeter of the curl of H over
because all interior paths surface S
cancel

The result is Stokes’ Theorem

fH-szf(vXH)-ds
oY

This is a valuable tool to have at our disposal, because it gives us two ways to evaluate the same thing!




Obtaining Ampere’ s Circuital Law in Integral Form, using
Stokes’ Theorem
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Begin with the point form of Ampere’ s Law for static fields:

VxH=] A

Integrate both sides over surface S:

[(VxH)-dS:[J-dS:¢H-dL nf |
S S

..In which the far right hand side is found from the left hand side H
using Stokes” Theorem. The closed path integral is taken around the ~——
perimeter of S. Again, note that we use the right-hand convention in
choosing the direction of the path integral.
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The center expression is just the net current through surface S,
so we are left with the integral form of Ampere’ s Law:

%H-dL:I

=



Magnetic Flux and Flux Density
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We are already familiar with the concept of electric flux:

U = /D - dS Coulombs
S

in which the electric flux density in free spaceis: I = ¢gE C/m2

and where the free space permittivity is €9 = 8.854 X 10712 F /m
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In a similar way, we can define the magnetic flux in units of Webers (Wb):

CI):/B-dS Webers

in which the magnetic flux density (or magnetic induction) in free space is: B — NOH Wb/m2

and where the free space permeability is 19 = 47 X 10" H /m

This is a defined quantity, having to do with the definition of the ampere (we will explore this later).



A Key Property of B
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If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

\Ijnet — %D - dS = Qenc

If the same were to be done with magnetic flux density, we would find:
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The implication is that (for our purposes) there are no magnetic charges
-- specifically, no point sources of magnetic field exist. A hint of this has already
been observed, in that magnetic field lines always close on themselves.
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Another Maxwell Equation

We may rewrite the closed surface integral of B using the divergence theorem, in which the
right hand integral is taken over the volume surrounded by the closed surface:

j{B-dS:/V-dezo
S v

Because the result is zero, it follows that

This result is known as Gauss’ Law for the magnetic field in point form.



Maxwell” s Equations for Static Fields
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We have now completed the derivation of Maxwell’ s equations for no time variation. In point form, these are:

g T
E VD = Pv Gauss' Law for the electric field
D VXE= 0 Conservative property of the static electric field
;
5 VxH= Ampere’ s Circuital Law
V-B = O Gauss’ Law for the Magnetic Field

D = ¢E Significant changes in the above four
equations will occur when the fields are
allowed to vary with time, as we’ Il see later.

where, in free space:

BZM()H




Maxwell” s Equations in Large Scale Form
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The divergence theorem and Stokes’ theorem can be applied to the previous four point form equations
to yield the integral form of Maxwell’ s equations for static fields:

fD -dS = Q - [ /Oudl) Gauss’ Law for the electric field
S vol
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f E . dL — O Conservative property of the static electric field

f H-dL =1 = [ J-dS Ampere’ s Circuital Law
5

f B-dS =0 Gauss’ Law for the magnetic field
S




Example: Magnetic Flux Within a Coaxial Line
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Consider a length d of coax, as shown here. The magnetic field strength between conductors is:

I/
Hy=— (a<p<b
sy (@ <p<b)
1
andso: B = puH = %a(p

The magnetic flux is now the integral of B over the
flat surface between radii a and b, and of length d along z:

1
=fB'dS=ff ’“LL% .dp dzay
S

[,L()Id b
In —
27 a
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The resultis;: & =

The coax line thus “stores” this amount of magnetic flux in the region between conductors.
This will have importance when we discuss inductance in a later lecture.



Scalar Magnetic Potential
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We are already familiar with the relation between the scalar electric potential and electric field:
E=-VV

So it is tempting to define a scalar magnetic potential such that:

H=-VYV,
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This rule must be consistent with Maxwell’ s equations, so therefore:

VxH=J=Vx(-VV,)

But the curl of the gradient of any function is identically zero! Therefore, the scalar magnetic potential
is valid only in regions where the current density is zero (such as in free space).

So we define scalar magnetic
potential with a condition:

H=-VV, (J=0)




Further Requirements on the Scalar Magnetic Potential
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The other Maxwell equation involving magnetic field must also be satisfied. This is:

V-B=puyV-H=0 infreespace

Therefore: Mov ' (—VVm) =0
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..and so the scalar magnetic potential satisfies Laplace’ s equation (again with the restriction
that current density must be zero:

ViV, =0 (J=0)
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Example: Coaxial Transmission Line

With the center conductor current flowing out of the screen, we have

H I
= ——a
2P ¢
Thus: —— = -V ——l%
yge ¢ p 09
v, I/
Sowe solve; —— = ——
o¢ 2

..and obtain: 'V, = —%qb

where the integration constant has been set to zero
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Ambiguities In the Scalar Potential

The scalar potential is now:

V, = Iqb
" 2

where the potential is zeroat ¢ = 0

At point P (¢ = m/4) the potential is

Vinp(¢p = mw/4) = —1/8

But wait! As ¢ increases to ¢ = 27

we have returned to the same physical location, and
the potential has a new value of -I.

In general, the potential at P will be multivalued, and will

acquire a new value after each full rotation in the xy plane:

V b= ! 2 I =0, +1, +2
I?’LP_E(‘H_Z)T'r (n’_ ) ) 1"')
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Overcoming the Ambiguity

To remove the ambiguity, we construct a mathematical barrier at any value of phi. The angle domain
cannot cross this barrier in either direction, and so the potential function is restricted to angles on either
side. In the present case we choose the barrier to lie at ¢ = 7 so that

Il

Vp=——¢ (—1<¢<m)
21

P(p,m/4,0)

The potential at point P is now single-valued:

Barrier at ¢ = 7
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Vector Magnetic Potential

We make use of the Maxwell equation: V. B = ()

.. and the fact that the divergence of the curl of any vector field is identically zero (show this!)

V-VXA=0

This leads to the definition of the magnetic vector potential, A:

B=VxA

Thus: H = LVXA

Ko

|
and Ampere’ s Law becomes VxH=J=—VxVxA
Ko
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Equation for the Vector Potential

|
Westartwithh: VX H=J = —V xV xA
M0

Then, introduce a vector identity that defines the vector Laplacian:
VIA=V(V-A) -V xVxA

Using a (lengthy) procedure (see Sec. 7.7) it can be proventhat {/ - A = ()

CIWe are therefore left with

VA = —0J
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The Direction of A

We now have VzA — _MOJ

In rectangular coordinates:

(not so simple in the
other coordinate systems)

VA = V?A,a, + V*A,a, + V*A.a,

The equation separates to give: V2 A r = —oJy
VA, = —uoly
VZA. = — -

This indicates that the direction of A will be the same as that of the current to which it is associated.

The vector field, A, existing in all space, is sometimes described as being a “fuzzy image”
of its generating current.
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Expressions for Potential

Consider a differential elements, shown here. On the left is a point charge represented
by a differential length of line charge. On the right is a differential current element. The setups
for obtaining potential are identical between the two cases.

Line Charge

R:

Free space

072+ 22

P(p, $,2)

Scalar Electrostatic Potential

dq

dV =
dreg R

prdL
Admeg R

Line Current

A Free space

R= p2+22

P(p, $,2)

Vector Magnetic Potential

dA = =
AT R AT R

toldL poldz a,




General Expressions for VVector Potential
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For large scale charge or current distributions, we would sum the differential
contributions by integrating over the charge or current, thus:

V = f ﬂ and A = % M
dmegR 4R

The closed path integral is taken because the current must
close on itself to form a complete circuit.
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For surface or volume current distributions, we would have, respectively:

Ao LRS-y [ s
s 4mR vol 4mR

In the same manner that we used for scalar electric potential.



Example
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We continue with the differential current element as shown here:

In this case A Free space

[,LQI dL
47 R

becomes at point P:

dA =
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Now, the curl is taken in cylindrical coordinates:

1 1 ddA ldz o
dH = —V xdA = —| — “la, = a
o o ( op ) P 4m (022

This is the same result as found using the Biot-Savart Law (as it should be)
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