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Toroid Magnetic Field

A toroid is a doughnut-shaped set of windings around a core material.  The cross-section could be

circular (as shown here, with radius a) or any other shape.    

Below, a slice of the toroid is shown, with current

emerging from the screen around the inner periphery

(in the positive z direction).  The windings are modeled 

as N individual current loops, each of which carries current I.
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Ampere’s Law as Applied to a Toroid

Ampere’s Circuital Law can be applied to a toroid by taking a closed loop integral 

around the circular contour C at radius Magnetic field H is presumed to be circular,

and a function of radius only at locations within the toroid that are not too close to the 

individual windings.  Under this condition, we would assume:

Ampere’s Law now takes the form:

so that….

Performing the same integrals over contours drawn 

in the regions                         or                         will 

lead to zero magnetic field there, because no current 

is enclosed in either case.

This approximation improves as the density of turns gets higher

(using more turns with finer wire).
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Surface Current Model of a Toroid

Consider a sheet current molded into a doughnut shape, as shown.  

The current density at radius               crosses the xy plane in the z 

direction and is given in magnitude by Ka

Ampere’s Law applied to a circular contour C inside the

toroid (as in the previous example) will take the form:

leading to…

inside the toroid…. and the field is zero outside as before.
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Ampere’s Law as Applied to a Small Closed Loop.

Consider magnetic field H evaluated at the point

shown in the figure.  We can approximate the field

over the closed path 1234 by making appropriate 

adjustments in the value of H along each segment.

The objective is to take the closed path integral 

and ultimately obtain the point form of Ampere’s Law. 
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Approximation of H Along One Segment

Along path 1-2, we may write:

where:

And therefore:
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Contributions of y-Directed Path Segments

The contributions from the front and back sides will be:

The contribution from the opposite side is:

This leaves the left and right sides…..

Note the path directions as specified in the figure, and 

how these determine the signs used .
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Contributions of x-Directed Path Segments

Along the right side (path 2-3):

…and the contribution from the left side (path 4-1) is:

The next step is to add the contributions of all four sides to find the closed path integral:
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Net Closed Path Integral

The total integral will now be the sum:

and using our previous results, the becomes:
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Relation to the Current Density

By Ampere’s Law, the closed path integral of H is equal to the enclosed current, approximated in 

this case by the current density at the center, multiplied by the loop area:

Dividing by the loop area, we now have:

The expression becomes exact as the loop area

approaches zero:
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Other Loop Orientations

The same exercise can be carried with the rectangular loop in the other two orthogonal orientations. 

The results are:

Loop in yz plane:

Loop in xz plane:

Loop in xy plane:

This gives all three components of the current density field.
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Curl of a Vector Field

The previous exercise resulted in the rectangular coordinate representation of the Curl of H.

In general, the curl of a vector field is another field that is normal to the original field.

The curl component in the direction N, normal to the plane of the integration loop is: 

The direction of N is taken using the right-hand convention:  With fingers of the right hand oriented

in the direction of the path integral, the thumb points in the direction of the normal (or curl).
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Curl in Rectangular Coordinates

Assembling the results of the rectangular loop integration exercise, we find the vector field

that comprises curl H:

An easy way to calculate this is to evaluate the following determinant:

which we see is equivalent to the cross product of the del operator with the field:
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Curl in Other Coordinate Systems

…a little more complicated!

Look these up as needed….
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Visualization of Curl

Consider placing a small “paddle wheel” in a flowing stream of water, as shown below.  The wheel 

axis points into the screen, and the water velocity decreases with increasing depth. 

The wheel will rotate clockwise, and give a curl component that points into the screen (right-hand rule).

Positioning the wheel at all three orthogonal orientations will yield measurements of 

all three components of the curl.  Note that the curl is directed normal to both the field 

and the direction of its variation.
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Another Maxwell Equation

It has just been demonstrated that:

…..which is in fact one of Maxwell’s equations for static fields:

This is Ampere’s Circuital Law in point form.
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….and Another Maxwell Equation

We already know that for a static electric field:

This means that:

Recall the condition for a conservative field:  that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.

(applies to a static electric field)
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Curl Applied to Partitions of a Large Surface

Surface S is paritioned into sub-regions, each of small area  

The curl component that is normal to a surface element can

be written using the definition of curl:

or:

We now apply this to every partition on the surface, and add the results….
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Adding the Contributions

.

Cancellation here:

We now evaluate and add the curl contributions

from all surface elements, and note that 

adjacent path integrals will all cancel!

This means that the only contribution to the 

overall path integral will be around the outer 

periphery of surface S.

No cancellation here:

Using our previous result, we now write:
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Stokes’ Theorem

.

We now take our previous result, and take the limit as 

In the limit, this side 

becomes the path integral 

of H over the outer perimeter

because all interior paths 

cancel

In the limit, this side

becomes the integral 

of the curl of H over

surface S

The result is Stokes’ Theorem

This is a valuable tool to have at our disposal, because it gives us two ways to evaluate the same thing!
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Obtaining Ampere’s Circuital Law in Integral Form, using 

Stokes’ Theorem

Begin with the point form of Ampere’s Law for static fields:

Integrate both sides over surface S:

..in which the far right hand side is found from the left hand side

using Stokes’ Theorem.  The closed path integral is taken around the 

perimeter of S.  Again, note that we use the right-hand convention in 

choosing the direction of the path integral.

The center expression is just the net current through surface S, 

so we are left with the integral form of Ampere’s Law:
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Magnetic Flux and Flux Density

We are already familiar with the concept of electric flux:

Coulombs

in which the electric flux density in free space is:

In a similar way, we can define the magnetic flux in units of Webers (Wb):

Webers

in which the magnetic flux density (or magnetic induction) in free space is:

and where the free space permittivity is 

and where the free space permeability is

This is a defined quantity, having to do with the definition of the ampere (we will explore this later).
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A Key Property of B

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

If the same were to be done with magnetic flux density, we would find:

The implication is that (for our purposes) there are no magnetic charges 

-- specifically, no point sources of magnetic field exist.  A hint of this has already

been observed, in that magnetic field lines always close on themselves.
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Another Maxwell Equation

We may rewrite the closed surface integral of B using the divergence theorem, in which the 

right hand integral is taken over the volume surrounded by the closed surface:

Because the result is zero, it follows that

This result is known as Gauss’ Law for the magnetic field in point form.
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Maxwell’s Equations for Static Fields

We have now completed the derivation of Maxwell’s equations for no time variation. In point form, these are:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the Magnetic Field

where, in free space:

Significant changes in the above four

equations will occur when the fields are 

allowed to vary with time, as we’ll see later.
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Maxwell’s Equations in Large Scale Form

The divergence theorem and Stokes’ theorem can be applied to the previous four point form equations 

to yield the integral form of Maxwell’s equations for static fields:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the magnetic field
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Example:  Magnetic Flux Within a Coaxial Line

d
B

Consider a length d of coax, as shown here.  The magnetic field strength between conductors is:

and so:

The magnetic flux is now the integral of B over the 

flat surface between radii a and b, and of length d along z: 

The result is:

The coax line thus “stores” this amount of magnetic flux in the region between conductors.  

This will have importance when we discuss inductance in a later lecture.
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Scalar Magnetic Potential

We are already familiar with the relation between the scalar electric potential and electric field: 

So it is tempting to define a scalar magnetic potential such that:

This rule must be consistent with Maxwell’s equations, so therefore:

But the curl of the gradient of any function is identically zero!  Therefore, the scalar magnetic potential

is valid only in regions where the current density is zero (such as in free space).

So we define scalar magnetic

potential with a condition:
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Further Requirements on the Scalar Magnetic Potential

The other Maxwell equation involving magnetic field must also be satisfied.  This is:

in free space

Therefore:

..and so the scalar magnetic potential satisfies Laplace’s equation (again with the restriction

that current density must be zero:
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Example:  Coaxial Transmission Line

With the center conductor current flowing out of the screen, we have

Thus:

So we solve:

.. and obtain:

where the integration constant has been set to zero
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Ambiguities in the Scalar Potential

The scalar potential is now:

where the potential is zero at 

At point P ( ) the potential is

But wait!  As      increases to  

we have returned to the same physical location, and 

the potential has a new value of -I.

In general, the potential at P will be multivalued, and will

acquire a new value after each full rotation in the xy plane:
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Overcoming the Ambiguity

Barrier at 

To remove the ambiguity, we construct a mathematical barrier at any value of phi.  The angle domain 

cannot cross this barrier in either direction, and so the potential function is restricted to angles on either

side.   In the present case we choose the barrier to lie at               so that   

The potential at point P is now single-valued:
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Vector Magnetic Potential

We make use of the Maxwell equation:

.. and the fact that the divergence of the curl of any vector field is identically zero (show this!)

This leads to the definition of the magnetic vector potential, A:

Thus:

and Ampere’s Law becomes 
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Equation for the Vector Potential

We start with:

Then, introduce a vector identity that defines the vector Laplacian:

Using a (lengthy) procedure (see Sec. 7.7) it can be proven that

�We are therefore left with
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The Direction of A

We now have

In rectangular coordinates:

The equation separates to give:

This indicates that the direction of A will be the same as that of the current to which it is associated.

(not so simple in the 

other coordinate systems)

The vector field, A, existing in all space, is sometimes described as being a “fuzzy image”
of its generating current.  
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Expressions for Potential

Consider a differential elements, shown here.  On the left is a point charge represented

by a differential length of line charge.  On the right is a differential current element.  The setups

for obtaining potential are identical between the two cases.  

Line Charge Line Current

Scalar Electrostatic Potential Vector Magnetic Potential
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General Expressions for Vector Potential

For large scale charge or current distributions, we would sum the differential 

contributions by integrating over the charge or current, thus:

and 

The closed path integral is taken because the current must

close on itself to form a complete circuit.

For surface or volume current distributions, we would have, respectively:

or

in the same manner that we used for scalar electric potential.
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Example

We continue with the differential current element as shown here:

In this case

becomes at point P:

Now, the curl is taken in cylindrical coordinates:

This is the same result as found using the Biot-Savart Law (as it should be)
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Thank you


