
Electromagnetic 

Field Theory

 

Ahmed Farghal, Ph.D.
Electrical Engineering, Sohag University

Lecture 6

The Uniform Plane Wave

Nov. 06, 2019



F
a

ll
  

2
0

1
9

D
r.

 A
h

m
e
d

  
F

a
rg

h
a
l

L
e

c
tu

re
 6

2

 Introduction

 Wave Propagation in Free Space

 Wave Propagation in Dielectric

 The Poynting Vector and Power Consideration

 Wave Propagation in Good Conductor: Skin 

Effect

 Wave Polarization

Contents



F
a

ll
  

2
0

1
9

D
r.

 A
h

m
e
d

  
F

a
rg

h
a
l

L
e

c
tu

re
 6

Introduction

3

Use Maxwell's Equation to introduce the fundamental

theory of wave motions.

The uniform plane wave is the simplest form of wave.

Calculate the speed of wave propagation and the

attenuation.

Use the Poynting Vector to calculate the power.

Learn how to specify the polarization of waves.

This chapter is the basics for wave reflection,

transmission line theory ,waveguide and antenna.
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WAVE PROPAGATION IN FREE SPACE
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The medium is sourceless (𝜌𝜈 = 𝐽 = 0)

Maxwell’s equations

We assume the existence of a uniform plane wave,

both E and H lie in the transverse plane—that is, the plane whose
normal is the direction of propagation.

both E and H are of constant magnitude in the transverse plane.
For this reason, such a wave is sometimes called a transverse
electromagnetic (TEM) wave.

The required spatial variation of both fields in the direction normal to
their orientations will therefore occur only in the direction of travel—or
normal to the transverse plane.
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Assume, that

𝐄 = 𝐸𝑥𝐚𝑥, i.e., electric field is polarized in the 𝒙 direction.

wave travel is in the 𝑧 direction, i.e., spatial variation of E is

only with 𝑧.

Then 𝛻 × 𝐄 = −𝜇0
𝜕H
𝜕𝑡

becomes

Using the 𝒚-directed magnetic field, and the fact that it varies only

in 𝑧, then

The last two equations can be written as
(7)

(8)

WAVE PROPAGATION IN FREE SPACE

(5)

(6)
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Differentiate
𝜕𝐸𝑥

𝜕𝑧
= −𝜇0

𝜕𝐻𝑦

𝜕𝑡
with respect to 𝒛, obtaining:

Then,
𝜕𝐻𝑦

𝜕𝑧
= −𝜖0

𝜕𝐸𝑥

𝜕𝑡
is differentiated with respect to 𝒕:

Substituting (10) into (9) results in

From Eq. (11), we further identify the propagation velocity:

(9)

(10)

The wave equation for 𝒙-polarized TEM electric field in free space

(11)

where 𝑐 denotes the velocity of light in free space. 

(12)

WAVE PROPAGATION IN FREE SPACE
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A similar procedure, involving differentiating (7) with t and (8)

with z, yields the wave equation for the magnetic field:

The solution to equations of the form of (11) and (13) will be

forward- and backward-propagating waves having the general form

where 𝑓1 and 𝑓2 can be any function whose argument is of the form 𝑡 ± 𝑧/𝜈.

The solution to (11) in the form of forward- and backward-

propagating cosines.

(13)

In free space,  phase velocity, 𝜈𝑝 = 𝑐
wavenumber
in free space in defined as 

WAVE PROPAGATION IN FREE SPACE
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ω is the radian time frequency, measuring phase shift per unit time;

it has units of rad/s.

𝒌𝟎 the spatial frequency, which measures the phase shift per unit

distance along the z direction in rad/m.

The wavelength in free space is the distance over which the spatial

phase shifts by 𝟐𝝅 radians, assuming fixed time, or

The real instantaneous fields of Eq. (15) in terms of their phasor

forms.

where c.c. denotes the complex conjugate, and where we identify the 

phasor electric field as 𝐸𝑥𝑠 = 𝐸𝑥0𝑒
−𝑗𝑘0𝑧.

WAVE PROPAGATION IN FREE SPACE

(19)
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Thank you


