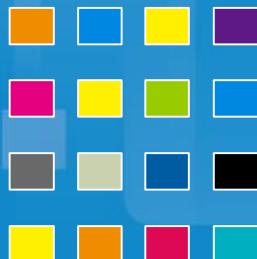
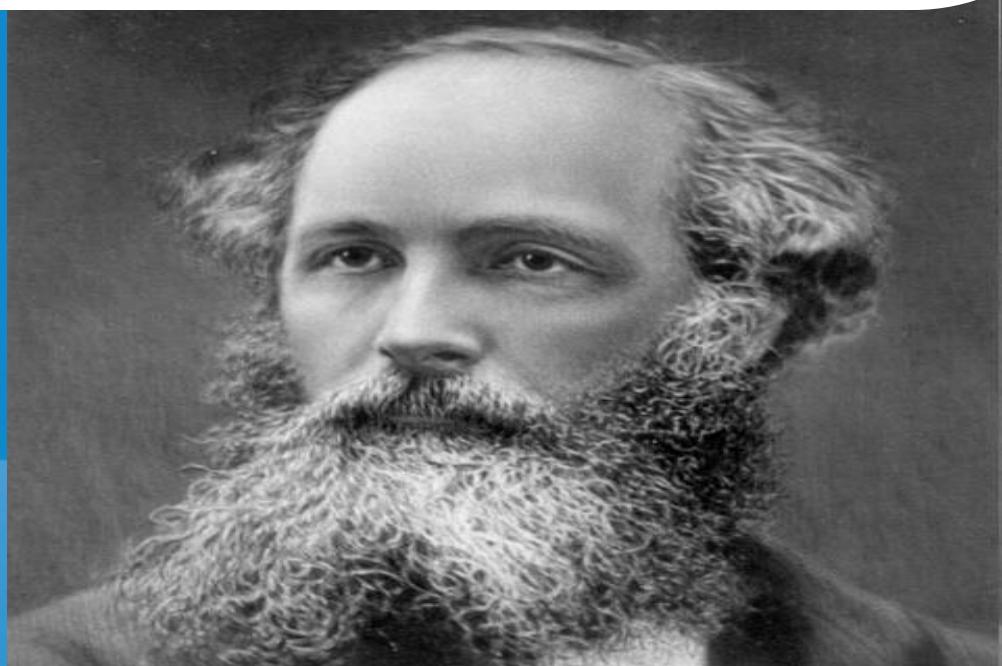


Lecture 7

The Uniform Plane Wave

Electromagnetic Field Theory



Nov. 13, 2019

Ahmed Farghal, Ph.D.
Electrical Engineering, Sohag University

Phasor Form

- Taking the **partial derivative** of any field quantity **w. r. t. time** is equivalent to multiplying the corresponding phasor by $j\omega$.
- We can express Eq. (8) $\frac{\partial H_y}{\partial z} = -\epsilon_0 \frac{\partial E_x}{\partial t}$ (using sinusoidal fields) as

$$\frac{\partial \mathcal{H}_y}{\partial z} = -\epsilon_0 \frac{\partial \mathcal{E}_x}{\partial t} \quad (20)$$

- where, in a manner consistent with (19):

$$\mathcal{E}_x(z, t) = \frac{1}{2} E_{xs}(z) e^{j\omega t} + c.c. \quad \text{and} \quad \mathcal{H}_y(z, t) = \frac{1}{2} H_{ys}(z) e^{j\omega t} + c.c. \quad (21)$$

- On substituting the fields in (21) into (20), the latter equation simplifies to

$$\frac{d H_{ys}(z)}{d z} = -j\omega \epsilon_0 E_{xs}(z) \quad (22)$$

Phasor Form

- For sinusoidal or cosinusoidal time variation,

$$\mathbf{E} = E_x \mathbf{a}_x \quad E_x = E(x, y, z) \cos(\omega t + \psi)$$

- Using Euler's Identity $e^{j\omega t} = \cos \omega t + j \sin \omega t$

- The field is $E_x = \operatorname{Re}[E(x, y, z)e^{j\psi}e^{j\omega t}]$

- The field in the phasor form is $E_{xs} = E(x, y, z)e^{j\psi} \quad \mathbf{E}_s = E_{xs} \mathbf{a}_x$

- For any sinusoidal time variation for field $\frac{\partial}{\partial t} \vec{E} = j\omega \vec{E}$ and $\frac{\partial}{\partial t} \vec{H} = j\omega \vec{H}$

$$\frac{\partial}{\partial t} \rightarrow j\omega$$

- The Maxwell's equation in phasor form

$$\nabla \times \mathbf{H}_s = j\omega \epsilon_0 \mathbf{E}_s \quad (23)$$

$$\nabla \times \mathbf{E}_s = -j\omega \mu_0 \mathbf{H}_s \quad (24)$$

$$\nabla \cdot \mathbf{E}_s = 0 \quad (25)$$

$$\nabla \cdot \mathbf{H}_s = 0 \quad (26)$$

- Eqs. (23) through (26) may be used to obtain the **sinusoidal steady-state vector form of the wave equation in free space.**

Wave Equation

- Using Maxwell's Equation the steady state wave equation can be written as:

$$\nabla \times (\nabla \times \mathbf{E}_s) = (\nabla^2 \mathbf{E}_s) - \nabla^2 \mathbf{E}_s = -j\omega\mu_o \nabla \times \mathbf{H}_s = \omega^2 \mu_o \epsilon_o \mathbf{E}_s$$

- Since $\nabla \cdot \mathbf{E}_s = 0 \rightarrow \nabla^2 \mathbf{E}_s = -k_o^2 \mathbf{E}_s$ Vector Helmholtz Wave Equation

k_o , the free space wavenumber,

$$k_o = \omega \sqrt{\mu_o \epsilon_o}$$

- The wave equation for the x -components is

$$\nabla^2 \mathbf{E}_{xs} = -k_o^2 \mathbf{E}_{xs}$$

- Using the definition of Del operator

$$\frac{\partial^2 E_{xs}}{\partial x^2} + \frac{\partial^2 E_{xs}}{\partial y^2} + \frac{\partial^2 E_{xs}}{\partial z^2} = -k_o^2 E_{xs}$$

- The field components does not change with x or y so the wave equation is lead to ordinary differential equation

$$\frac{d^2 E_{xs}}{dz^2} = -k_o^2 E_{xs}$$

- the solution of which

$$E_{xs}(z) = E_{x0} e^{-jk_0 z} + E'_{x0} e^{jk_0 z} \quad (31)$$

WAVE PROPAGATION IN FREE SPACE

- Given \mathbf{E}_s , \mathbf{H}_s is most easily obtained from (24):

$$\nabla \times \mathbf{E}_s = -j\omega\mu_0 \mathbf{H}_s$$

- which is greatly simplified for a single E_{xs} component varying only with z ,

$$\frac{dE_{xs}}{dz} = -j\omega\mu_0 H_{ys}$$

- Using (31) for $E_{xs} = E_{x0}e^{-jk_0z} + E'_{x0}e^{jk_0z}$, we have

$$\begin{aligned} H_{ys} &= -\frac{1}{j\omega\mu_0} [(-jk_0)E_{x0}e^{-jk_0z} + (jk_0)E'_{x0}e^{jk_0z}] \\ &= E_{x0}\sqrt{\frac{\epsilon_0}{\mu_0}}e^{-jk_0z} - E'_{x0}\sqrt{\frac{\epsilon_0}{\mu_0}}e^{jk_0z} = H_{y0}e^{-jk_0z} + H'_{y0}e^{jk_0z} \end{aligned} \quad (32)$$

- In real instantaneous form, this becomes

$$H_y(z, t) = E_{x0}\sqrt{\frac{\epsilon_0}{\mu_0}} \cos(\omega t - k_0z) - E'_{x0}\sqrt{\frac{\epsilon_0}{\mu_0}} \cos(\omega t + k_0z) \quad (33)$$

- where E_{x0} and E'_{x0} are assumed real.

WAVE PROPAGATION IN FREE SPACE

- In general, we find from (32) that the electric and magnetic field amplitudes of the forward-propagating wave in free space are related through

$$E_{x0} = \sqrt{\frac{\mu_0}{\epsilon_0}} H_{y0} = \eta_0 H_{y0}$$

- We also find the backward-propagating wave amplitudes are related through

$$E'_{x0} = -\sqrt{\frac{\mu_0}{\epsilon_0}} H'_{y0} = -\eta_0 H'_{y0}$$

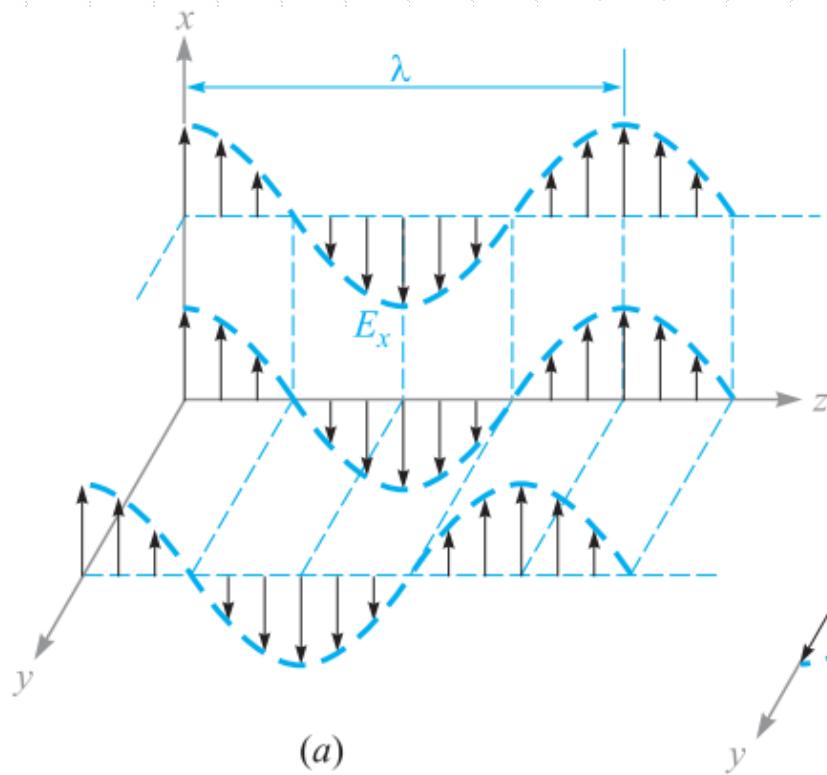
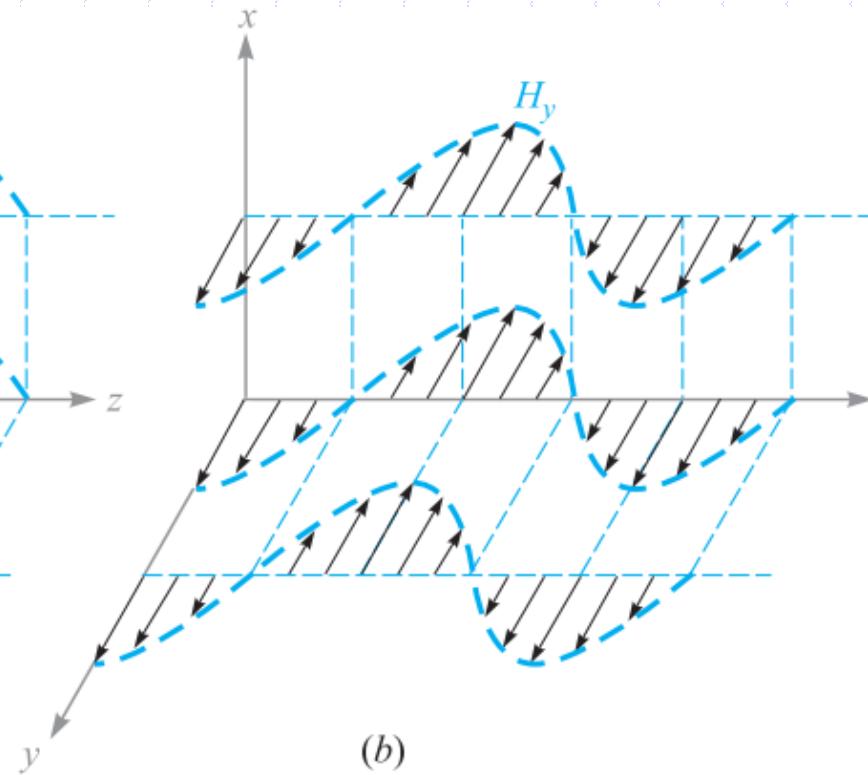
- where the intrinsic impedance of free space is defined as

$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \doteq 120\pi \Omega$$

- The dimension of η_0 in ohms is immediately evident from its definition as the ratio of E (in units of V/m) to H (in units of A/m).

The fields

- The uniform plane cannot exists because it extends to infinity in two dimensions at least and represents an infinite amount of energy.
- The far field of the antenna can be represented by a uniform plane wave



Thank you

Have a nice day.

