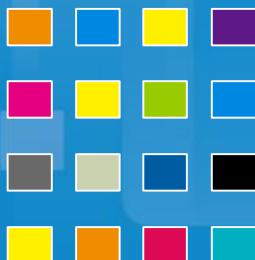
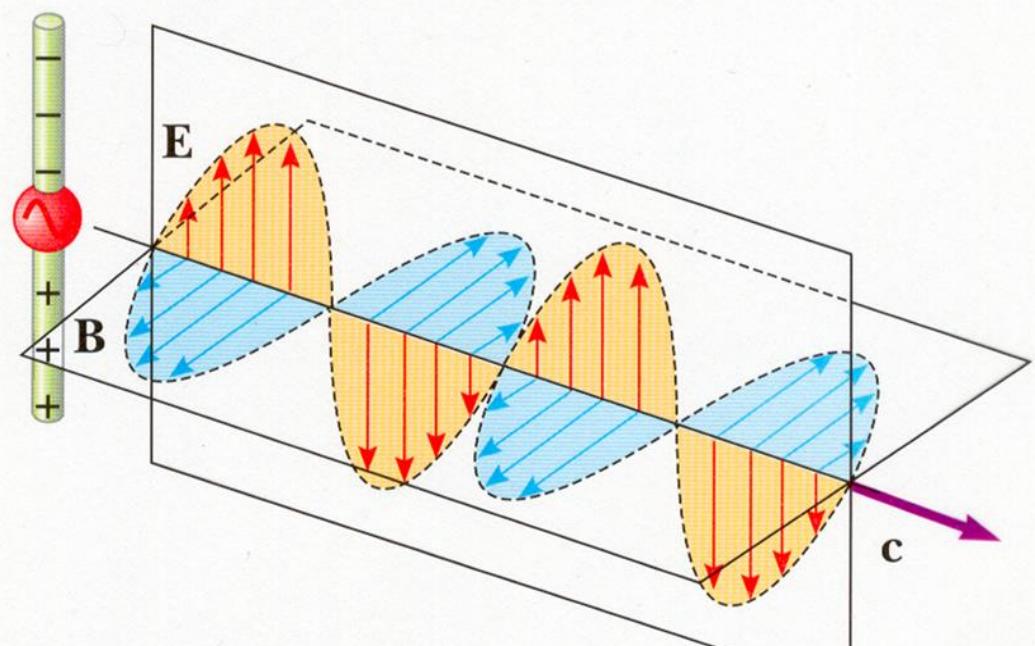


# Lecture 9

# Wave Polarization

## Electromagnetic Field Theory



Nov. 27, 2019

*Ahmed Farghal, Ph.D.*  
Electrical Engineering, Sohag University

# WAVE POLARIZATION

- The **wave polarization** is defined as its electric field vector orientation as a function of time at fixed position in space

## 1. Linearly polarized wave,

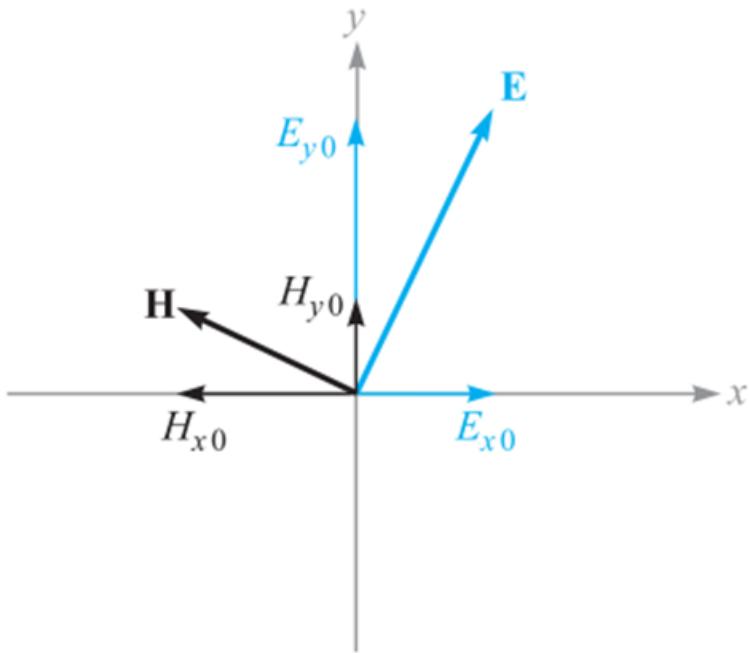
- $\mathbf{E}$  is in a fixed straight orientation for all times and positions.
- For +ve  $z$  propagation, the wave would in general have its **electric field phasor** expressed as

$$\mathbf{E}_s = (E_{x0}\mathbf{a}_x + E_{y0}\mathbf{a}_y)e^{-\alpha z} e^{-j\beta z}$$

- where  $E_{x0}$  and  $E_{y0}$  are constant amplitudes along  $x$  and  $y$ .
- The **magnetic field** is readily found by determining its  $x$  and  $y$  components directly from those of  $E_s$ .

$$\mathbf{H}_s = [H_{x0}\mathbf{a}_x + H_{y0}\mathbf{a}_y]e^{-\alpha z} e^{-j\beta z} = \left[ -\frac{E_{y0}}{\eta} \mathbf{a}_x + \frac{E_{x0}}{\eta} \mathbf{a}_y \right] e^{-\alpha z} e^{-j\beta z}$$

# WAVE POLARIZATION



- The figure demonstrates the reason for the minus sign in the term involving  $E_{y0}$ .
- The direction of power flow, given by  $E \times H$ , is in the +ve z direction in this case.
  - A component of E in the positive y direction would require a component of H in the negative x direction—thus the minus sign.

# WAVE POLARIZATION

- The **power density** in the wave is

$$\begin{aligned}
 \langle S_z \rangle &= \frac{1}{2} \operatorname{Re} \{ \mathbf{E}_s \times \mathbf{H}_s^* \} \\
 &= \frac{1}{2} \operatorname{Re} \{ E_{x0} H_{y0}^* (\mathbf{a}_x \times \mathbf{a}_y) + E_{y0} H_{x0}^* (\mathbf{a}_x \times \mathbf{a}_y) \} e^{-2\alpha z} \\
 &= \frac{1}{2} \operatorname{Re} \left\{ \frac{E_{x0} E_{x0}^*}{\eta^*} + \frac{E_{y0} E_{y0}^*}{\eta^*} \right\} e^{-2\alpha z} \mathbf{a}_z \\
 &= \frac{1}{2} \operatorname{Re} \left\{ \frac{1}{\eta^*} \right\} (|E_{x0}|^2 + |E_{y0}|^2) e^{-2\alpha z} \mathbf{a}_z \quad \text{W/m}^2
 \end{aligned}$$

- This result demonstrates the idea that a **linearly polarized plane wave** can be considered as two distinct plane waves having  $x$  and  $y$  polarizations, whose electric fields are combining in phase to produce the total  $\mathbf{E}$ .
- The same is true for the magnetic field components.

# WAVE POLARIZATION

- Any **polarization state** can be described in terms of mutually perpendicular components of the electric field and their relative phasing.
- We next consider the effect of a phase difference,  $\varphi$ , between  $E_{x0}$  and  $E_{y0}$ , where  $\varphi < \pi/2$ .
- Consider propagation in a lossless medium

$$\mathbf{E}_s = (E_{x0} \mathbf{a}_x + E_{y0} \mathbf{a}_y) e^{-j\beta z}$$

- The real instantaneous form

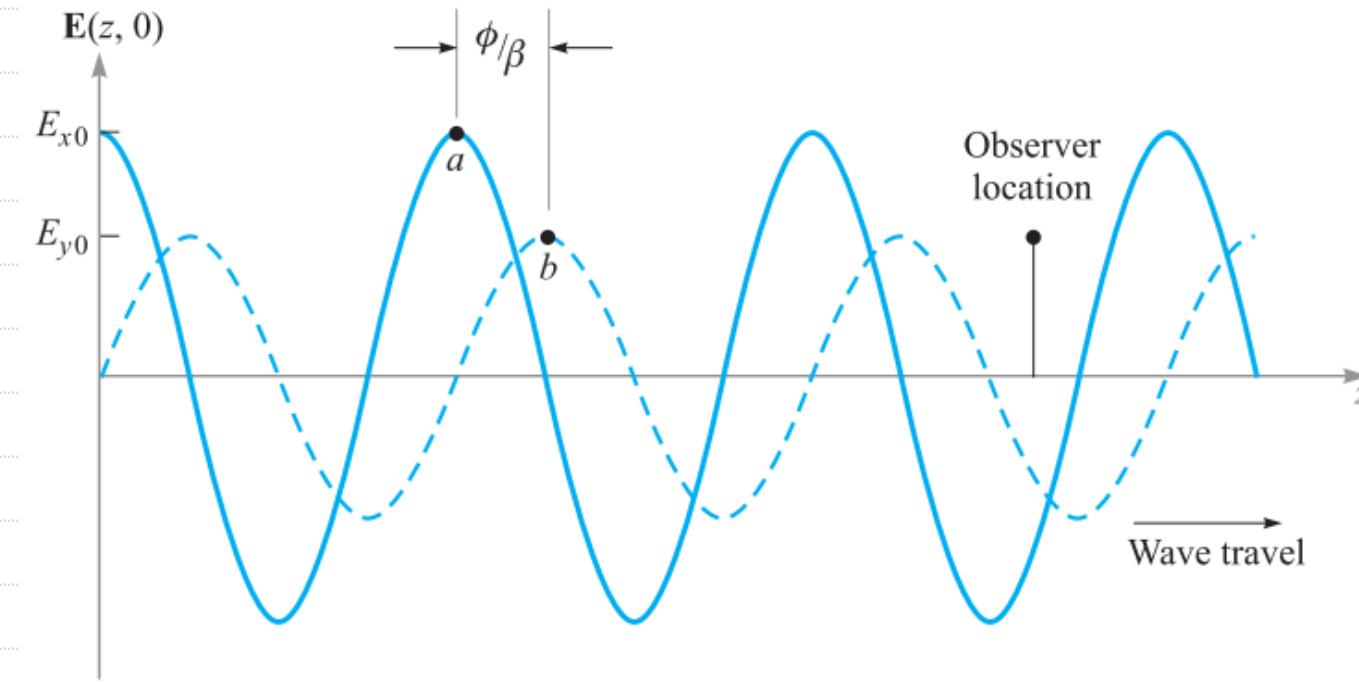
$$\mathbf{E}(z, t) = E_{x0} \cos(\omega t - \beta z) \mathbf{a}_x + E_{y0} \cos(\omega t - \beta z + \phi) \mathbf{a}_y$$

- $E_{x0}$  and  $E_{y0}$  are real.

- Set  $t = 0$ , and using  $\cos(-x) = \cos(x)$

$$\mathbf{E}(z, 0) = E_{x0} \cos(\beta z) \mathbf{a}_x + E_{y0} \cos(\beta z - \phi) \mathbf{a}_y$$

# WAVE POLARIZATION



- The component magnitudes of  $E(z, 0)$  are plotted as functions of  $z$ .
- Since time is fixed at zero, the wave is frozen in position.
- Consider a **crest of  $E_x$** , indicated as **point a**.
  - ➔ If  $\phi$  were zero,  $E_y$  would have a crest at the same location. Since  $\phi$  is not zero (and positive), the crest of  $E_y$  that would otherwise occur at **point a** is now displaced to **point b** farther down  $z$ .
- The two points are separated by distance  $\phi / \beta$ .
- $E_y$  thus **lags behind**  $E_x$  when we consider the spatial dimension.

# WAVE POLARIZATION

## ■ Circular polarization:

■ Let  $E_{x0} = E_{y0} = E_0$  and  $\varphi = \pm\pi/2$ .

$$\begin{aligned}\mathbf{E}(z, t) &= E_0 [\cos(\omega t - \beta z) \mathbf{a}_x + \cos(\omega t - \beta z \pm \pi/2) \mathbf{a}_y] \\ &= E_0 [\cos(\omega t - \beta z) \mathbf{a}_x \mp \sin(\omega t - \beta z) \mathbf{a}_y]\end{aligned}$$

■ If we consider a fixed position along  $z$  (such as  $z = 0$ ) and allow time to vary, with  $\varphi = -\pi/2$ , becomes

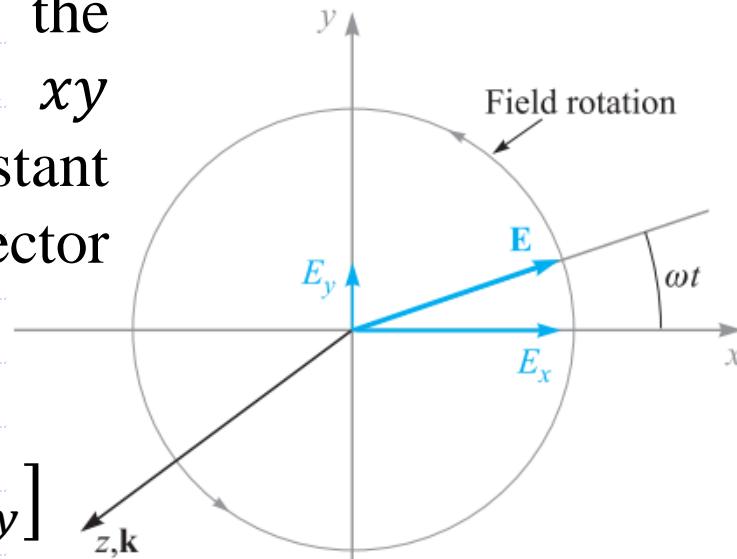
$$\mathbf{E}(0, t) = E_0 [\cos(\omega t) \mathbf{a}_x + \sin(\omega t) \mathbf{a}_y]$$

■ The field vector rotates in the **counterclockwise direction** in the  $xy$  plane, while maintaining constant amplitude  $E_0$ , and so the tip of the vector traces out a **circle**.

■ with  $\varphi = +\pi/2$

$$\mathbf{E}(0, t) = E_0 [\cos(\omega t) \mathbf{a}_x - \sin(\omega t) \mathbf{a}_y]$$

■ The field vector rotates in the **clockwise direction**.



# WAVE POLARIZATION

- The wave exhibits **left circular polarization (l.c.p.)** if, when orienting the left hand with the thumb in the direction of propagation, the fingers curl in the rotation direction of the field with time.
- The wave exhibits **right circular polarization (r.c.p.)** if, with the right-hand thumb in the propagation direction, the fingers curl in the field rotation direction.

$$\mathbf{E}(0, t) = E_0 [\cos(\omega t) \mathbf{a}_x - \sin(\omega t) \mathbf{a}_y]$$

left circularly polarized wave

$$\mathbf{E}(0, t) = E_0 [\cos(\omega t) \mathbf{a}_x + \sin(\omega t) \mathbf{a}_y]$$

right circularly polarized wave

$$\begin{aligned} \mathbf{E}(z, t) &= E_0 [\cos(\omega t - \beta z) \mathbf{a}_x + \cos(\omega t - \beta z \pm \pi/2) \mathbf{a}_y] \\ &= E_0 [\cos(\omega t - \beta z) \mathbf{a}_x \mp \sin(\omega t - \beta z) \mathbf{a}_y] \end{aligned}$$

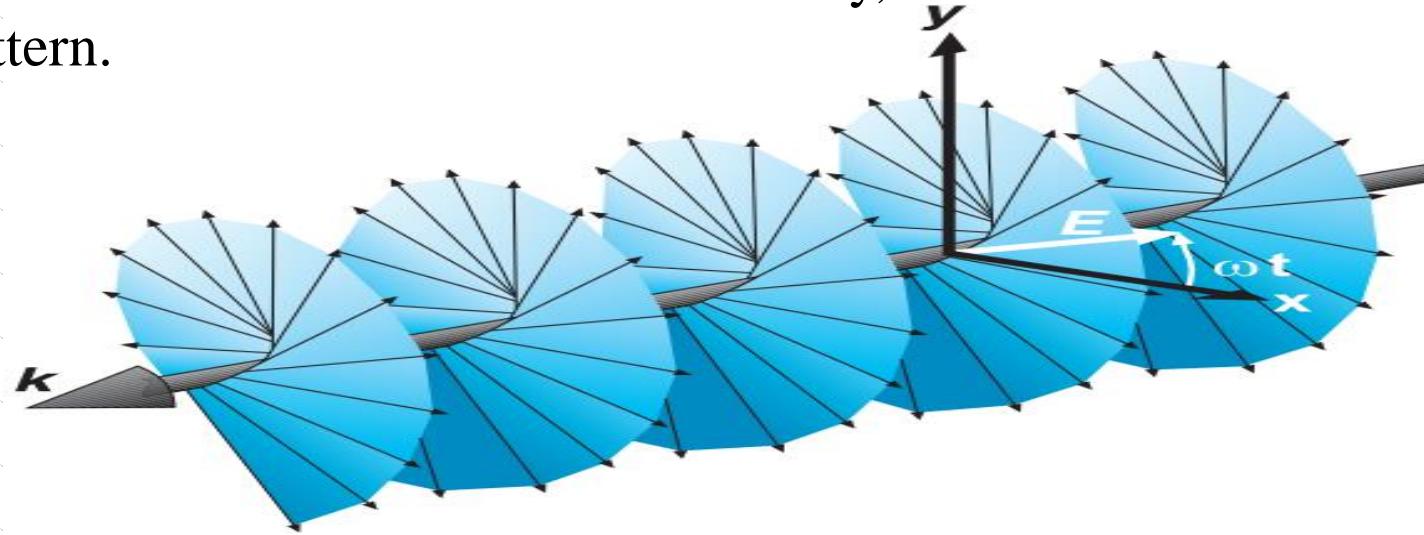
- The instantaneous angle of the field from the  $x$  direction

$$\theta(z, t) = \tan^{-1} \left( \frac{E_y}{E_x} \right) = \tan^{-1} \left( \frac{\mp \sin(\omega t - \beta z)}{\cos(\omega t - \beta z)} \right) = \mp(\omega t - \beta z)$$

# WAVE POLARIZATION

$$\theta(z, t) = \tan^{-1} \left( \frac{E_y}{E_x} \right) = \tan^{-1} \left( \frac{\mp \sin(\omega t - \beta z)}{\cos(\omega t - \beta z)} \right) = \mp(\omega t - \beta z)$$

- where again the **minus sign** (yielding **l.c.p.** for +ve  $z$  travel) applies for the choice of  $\phi = +\pi/2$ ; the **plus sign** (yielding **r.c.p.** for +ve  $z$  travel) is used if  $\phi = -\pi/2$ .
- If we choose  $z = 0$ , the angle becomes simply  $\omega t$ , which reaches  $2\pi$  (one complete rotation) at time  $t = 2\pi/\omega$ .
- If we choose  $t = 0$  and allow  $z$  to vary, we form a **corkscrew-like** field pattern.



Representation of a right circularly polarized wave.

# WAVE POLARIZATION

## Elliptically polarized wave

- Elliptical Polarization can be attained only if the phase difference between the two components is **odd multiple of  $\pi/2$**  and their magnitudes **are not equal** or the phase difference is **not multiple of  $\pi/2$** .

$$\mathbf{E}_s = (E_{x0}\mathbf{a}_x + E_{y0}e^{j\phi}\mathbf{a}_y)e^{-j\beta z}$$

$$\mathbf{E}(z, t) = E_{x0} \cos(\omega t - \beta z) \mathbf{a}_x + E_{y0} \cos(\omega t - \beta z + \phi) \mathbf{a}_y$$

$$\mathbf{E}(z, 0) = E_{x0} \cos(\beta z) \mathbf{a}_x + E_{y0} \cos(\beta z - \phi) \mathbf{a}_y$$

# Thank you



Have a nice day.

