Lecture 9
Wave Polarization

Electromagnetic
Field Theory
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WAVE POLARIZATION

# The wave polarization i1s defined as its electric field vector
orientation as a function of time at fixed position in space

1. Linearly polarized wave,
# E isin a fixed straight orientation for all times and positions.

# For +ve z propagation, the wave would in general have its electric
field phasor expressed as
ES = (Exoax +- Eyoay)e_az e_]ﬁz

B where E,, and E,,, are constant amplitudes
along x and y.
B The magnetic field Is readily found by

determining its x and y components directly
from those of E..
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WAVE POLARIZATION
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# The figure demonstrates the reason for the minus sign in the term
involving E,
# The direction of power flow, given by ExH, is in the +ve z
direction in this case.
» A component of E In the positive y direction would require a
component of H in the negative x direction—thus the minus
sign.
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WAVE POLARIZATION

B The power density in the wave is
1
(52) = ERe{Es X Hg}
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= ERe{Eon;O(ax X a,) + EjoHyo(ay x a,)}e™2%%

E 1 E, E; E,nE:
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# This result demonstrates the idea that a linearly polarized plane
wave can be considered as two distinct plane waves having x and y
polarizations, whose electric fields are combining In phase to
produce the total E.

# The same is true for the magnetic field components.
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WAVE POLARIZATION

# Any polarization state can be described in terms of mutually

perpendicular components of the electric field and their relative
phasing.

# We next consider the effect of a phase difference, ¢, between E,,

and Ey,o, where ¢ < m/2.

# Consider propagation in a lossless medium

ES — (Exoax ~+ Eyoay)e_jﬁz

# The real instantaneous form

E(z,t) = Eyo cos(wt — fz) a, + Eyg cos(wt — fz + ¢) a,,

i E,and E are real.
# Sett = 0, and using cos(—x) = cos(x)

E(z,0) = Exo cos(Bz) a, + Eo cos(fz — ¢) a,,



WAVE POLARIZATION

E(z, 0)
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The component magnitudes of E(z, 0) are plotted as functions of z.
Since time is fixed at zero, the wave is frozen in position.
B Consider a crest of E,., indicated as point a.

» If ¢ were zero, E,, would have a crest at the same location. Since ¢ Is
not zero (and posmve) the crest of E,, that would otherwise occur at
point a i1s now displaced to point b farther down z.

B The two points are separated by distance ¢ /f.
§ E, thus lags behind E, when we consider the spatial dimension. 6




WAVE POLARIZATION

® Circular polarization:
i LetE,o =E,o = Epand ¢ = xm/2.
E(z,t) = E, [cos(wt — Bz)a, + cos(wt — Bz + w/2) ay]
= E, [cos(wt — [z) a, + sin(wt — fz) ay]

® If we consider a fixed position along z (such as z = 0) and allow

time to vary, with ¢ = —m/2, becomes

E(0,t) = E, [cos(a)t) a, + sin(wt) ay]

B The field wvector rotates in the A

counterclockwise direction in the xy _ Fiskd roution

plane, while maintaining constant
amplitude E,, and so the tip of the vector

traces out a circle.
B with o = +m/2 /
E(0,t) = E, [cos(wt) a, — sin(wt) ay]

E The field vector rotates in the clockwise dlrectlon. 2
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WAVE POLARIZATION

# The wave exhibits left circular polarization (l.c.p.) if, when

orienting the left hand with the thumb iIn the direction of
propagation, the fingers curl in the rotation direction of the field
with time.

# The wave exhibits right circular polarization (r.c.p.) if, with the

right-nand thumb in the propagation direction, the fingers curl in
the field rotation direction.

E(0,t) = Ey|cos(wt) a, — sin(wt) a,| [left circularly polarized wave

E(0,t) = E, :Cos(a)t) a, + sin(wt) ay: right circularly polarized wave

E(z,t) = E, [Cos(a)t — Bz)a, + cos(wt — fz + w/2) ay]
= E, [cos(wt — [z) a, + sin(wt — Bz) ay]

# The Instantaneous angle of the field from the x direction

6(z,t) =tan™* (ﬁ> = tan™! ($ sin(wt — ﬁZ)) = F(wt — B2)

E, cos(wt — fz)
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WAVE POLARIZATION

0(z,t) = tan?! (ﬂ> = tan~! ($ sin(wt — ﬁz)) = F(wt — Bz)

E, cos(wt — fz)

B where again the minus sign (yielding l.c.p. for +ve z travel) applies for
the choice of ¢ = +n/2; the plus sign (yielding r.c.p. for +ve z travel) is
used if ¢ = —mn/2.

B If we choose z = 0, the angle becomes simply wt, which reaches 2m
(one complete rotation) at time t = 2m/w.

B If we choose t = 0 and allow z to vary, we form a corkscrew-like field
pattern.
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Representation of a right circularly polarized wave.



WAVE POLARIZATION

# Elliptically polarized wave

# Elliptical Polarization can be attained only if the phase difference
between the two components is odd multiple of /2 and their
magnitudes are not equal or the phase difference is not multiple

of /2.
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E(z,t) = Eyo cos(wt — fz) a, + E,o cos(wt — fz + ¢) a,,
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E(z,0) = Eyocos(fBz) a, + Eyg cos(fz — ¢) a,
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