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WAVE POLARIZATION
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The wave polarization is defined as its electric field vector

orientation as a function of time at fixed position in space

1. Linearly polarized wave,

E is in a fixed straight orientation for all times and positions.

For +ve 𝑧 propagation, the wave would in general have its electric

field phasor expressed as

𝐄𝑠 = 𝐸𝑥0𝐚𝑥 + 𝐸𝑦0𝐚𝑦 𝑒−𝛼𝑧 𝑒−𝑗𝛽𝑧

where 𝐸𝑥0 and 𝐸𝑦0 are constant amplitudes

along 𝑥 and 𝑦.

The magnetic field is readily found by

determining its 𝑥 and 𝑦 components directly

from those of 𝐸𝑠.

𝐇𝑠 = 𝐻𝑥0𝐚𝑥 +𝐻𝑦0𝐚𝑦 𝑒−𝛼𝑧 𝑒−𝑗𝛽𝑧 = −
𝐸𝑦0
𝜂

𝐚𝑥 +
𝐸𝑥0
𝜂
𝐚𝑦 𝑒−𝛼𝑧 𝑒−𝑗𝛽𝑧



F
a

ll
  

2
0

1
9

D
r.

 A
h

m
e
d

  
F

a
rg

h
a
l

L
e

c
tu

re
 8

WAVE POLARIZATION
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The figure demonstrates the reason for the minus sign in the term

involving 𝐸𝑦0 .

The direction of power flow, given by E × H, is in the +ve 𝑧
direction in this case.

A component of E in the positive 𝑦 direction would require a

component of H in the negative 𝑥 direction—thus the minus

sign.
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WAVE POLARIZATION
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The power density in the wave is

𝑆𝑧 =
1

2
Re E𝑠 × 𝐇𝑠

∗

=
1

2
Re 𝐸𝑥0𝐻𝑦0

∗ 𝐚𝑥 × a𝑦 + 𝐸𝑦0𝐻𝑥0
∗ 𝐚𝑥 × a𝑦 𝑒−2𝛼𝑧

=
1

2
Re

𝐸𝑥0𝐸𝑥0
∗

𝜂∗
+
𝐸𝑦0𝐸𝑦0

∗

𝜂∗
𝑒−2𝛼𝑧𝐚𝑧

=
1

2
Re

1

𝜂∗
𝐸𝑥0

2 + 𝐸𝑦0
2
𝑒−2𝛼𝑧𝐚𝑧 W/m2

This result demonstrates the idea that a linearly polarized plane

wave can be considered as two distinct plane waves having 𝑥 and 𝑦
polarizations, whose electric fields are combining in phase to

produce the total E.

The same is true for the magnetic field components.
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WAVE POLARIZATION
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Any polarization state can be described in terms of mutually

perpendicular components of the electric field and their relative

phasing.

We next consider the effect of a phase difference, 𝜑, between 𝐸𝑥0
and 𝐸𝑦0, where 𝜑 < 𝜋/2.

Consider propagation in a lossless medium

𝐄𝑠 = 𝐸𝑥0𝐚𝑥 + 𝐸𝑦0𝐚𝑦 𝑒−𝑗𝛽𝑧

The real instantaneous form

𝐸 𝑧, 𝑡 = 𝐸𝑥0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 + 𝐸𝑦0 cos(𝜔𝑡 − 𝛽𝑧 + 𝜙) 𝐚𝑦

𝐸𝑥0 and 𝐸𝑦0 are real.

Set 𝑡 = 0, and using cos(−𝑥) = cos(𝑥)
𝐸 𝑧, 0 = 𝐸𝑥0 cos(𝛽𝑧) 𝐚𝑥 + 𝐸𝑦0 cos(𝛽𝑧 − 𝜙) 𝐚𝑦
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WAVE POLARIZATION
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The component magnitudes of 𝐸(𝑧, 0) are plotted as functions of 𝑧.

Since time is fixed at zero, the wave is frozen in position.

Consider a crest of 𝐸𝑥, indicated as point a.

If 𝜑 were zero, 𝐸𝑦 would have a crest at the same location. Since 𝜙 is
not zero (and positive), the crest of 𝐸𝑦 that would otherwise occur at
point a is now displaced to point b farther down z.

The two points are separated by distance 𝜑/𝛽.

𝐸𝑦 thus lags behind 𝐸𝑥 when we consider the spatial dimension.
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WAVE POLARIZATION
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Circular polarization:

Let 𝐸𝑥0 = 𝐸𝑦0 = 𝐸0 and 𝜑 = ±𝜋/2.

𝐄 𝑧, 𝑡 = 𝐸0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 + cos(𝜔𝑡 − 𝛽𝑧 ± Τ𝜋 2) 𝐚𝑦
= 𝐸0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 ∓ sin(𝜔𝑡 − 𝛽𝑧) 𝐚𝑦

If we consider a fixed position along 𝑧 (such as 𝑧 = 0) and allow
time to vary, with 𝜑 = −𝜋/2, becomes

𝐄(0, 𝑡) = 𝐸0 cos(𝜔𝑡) 𝐚𝑥 + sin(𝜔𝑡) 𝐚𝑦

The field vector rotates in the

counterclockwise direction in the 𝑥𝑦
plane, while maintaining constant

amplitude 𝐸0, and so the tip of the vector

traces out a circle.

with 𝜑 = +𝜋/2

𝐄(0, 𝑡) = 𝐸0 cos(𝜔𝑡) 𝐚𝑥 − sin(𝜔𝑡) 𝐚𝑦

The field vector rotates in the clockwise direction.
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WAVE POLARIZATION
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The wave exhibits left circular polarization (l.c.p.) if, when

orienting the left hand with the thumb in the direction of

propagation, the fingers curl in the rotation direction of the field

with time.

The wave exhibits right circular polarization (r.c.p.) if, with the

right-hand thumb in the propagation direction, the fingers curl in

the field rotation direction.

left circularly polarized wave

right circularly polarized wave𝐄(0, 𝑡) = 𝐸0 cos(𝜔𝑡) 𝐚𝑥 + sin(𝜔𝑡) 𝐚𝑦

𝐄(0, 𝑡) = 𝐸0 cos(𝜔𝑡) 𝐚𝑥 − sin(𝜔𝑡) 𝐚𝑦

The instantaneous angle of the field from the 𝑥 direction

𝜃 𝑧, 𝑡 = tan−1
𝐸𝑦

𝐸𝑥
= tan−1

∓sin(𝜔𝑡 − 𝛽𝑧)

cos(𝜔𝑡 − 𝛽𝑧)
= ∓ 𝜔𝑡 − 𝛽𝑧

𝐄 𝑧, 𝑡 = 𝐸0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 + cos(𝜔𝑡 − 𝛽𝑧 ± Τ𝜋 2) 𝐚𝑦
= 𝐸0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 ∓ sin(𝜔𝑡 − 𝛽𝑧) 𝐚𝑦
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WAVE POLARIZATION
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𝜃 𝑧, 𝑡 = tan−1
𝐸𝑦

𝐸𝑥
= tan−1

∓sin(𝜔𝑡 − 𝛽𝑧)

cos(𝜔𝑡 − 𝛽𝑧)
= ∓ 𝜔𝑡 − 𝛽𝑧

where again the minus sign (yielding l.c.p. for +ve 𝑧 travel) applies for

the choice of φ = +π/2; the plus sign (yielding r.c.p. for +ve 𝑧 travel) is

used if φ = −π/2.

If we choose 𝑧 = 0, the angle becomes simply 𝜔𝑡, which reaches 2𝜋
(one complete rotation) at time 𝑡 = 2𝜋/𝜔.

If we choose 𝑡 = 0 and allow 𝑧 to vary, we form a corkscrew-like field

pattern.

Representation of a right circularly polarized wave. 
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WAVE POLARIZATION
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Elliptically polarized wave

Elliptical Polarization can be attained only if the phase difference

between the two components is odd multiple of 𝝅/𝟐 and their

magnitudes are not equal or the phase difference is not multiple

of 𝝅/𝟐.

𝐄𝑠 = 𝐸𝑥0𝐚𝑥 + 𝐸𝑦0𝑒
𝑗𝜙𝐚𝑦 𝑒−𝑗𝛽𝑧

𝐸 𝑧, 𝑡 = 𝐸𝑥0 cos(𝜔𝑡 − 𝛽𝑧) 𝐚𝑥 + 𝐸𝑦0 cos(𝜔𝑡 − 𝛽𝑧 + 𝜙) 𝐚𝑦

𝐸 𝑧, 0 = 𝐸𝑥0 cos(𝛽𝑧) 𝐚𝑥 + 𝐸𝑦0 cos(𝛽𝑧 − 𝜙) 𝐚𝑦
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Thank you


