Lecture 8
 T-Line Matching

EL221

Electromagnetic Hield Theory (2-B) Spring 2020

Dr. Ahmed Farghal

Assistant Professor
Dept. of Electrical Engineering, Faculty of Engineering, Sohag University

Impedance Matching

Impedance matching (simply matching) one portion of a circuit to another is an immensely important part of MW engineering.
II Additional circuitry between the two parts of the original circuit may be needed to achieve this matching.

Why is impedance matching so important?

- Maximum power is delivered to a load when the TL is matched at both the load and source ends.
- With a properly matched TL, more signal power is transferred to the load, which increases the sensitivity of the device and improve the SNR ratio of the system.
- Some equipment (such as certain amplifiers) can be damaged when too much power is reflected back to the source.
- Minimize reflections.

Impedance Matching

: Consider the case of an arbitrary load that terminates a T-Line:

1. To match the load to the T-Line, we require $\Gamma_{\mathrm{L}}=\mathbf{0}$.
:1. However, if $Z_{L} \neq Z_{0}$, additional circuitry must be placed between Z_{L} and Z_{0} to bring the VSWR $=1$, or least approximately so:

For $\Gamma_{L}=0$, this implies $Z_{\text {in }}=Z_{0}$. In other words, $R_{\text {in }}=\mathfrak{R e}\left[Z_{0}\right]$ and $X_{\text {in }}=0$, if the TL is lossless.

Impedance Matching

1 We will discuss three methods for impedance matching in this course:

- Matching with L-Sections (lumped elements)
- Stub tuners (T-line/distributed elements)
- Quarter wave impedance transformers.

Factors that influence the choice of a matching network include:
\dagger Physical complexity

- Bandwidth
\Rightarrow Adjustability (to match a variable load impedance)
- Implementation

Lumped Element matching network

Add an element in series or parallel to Z_{L} so that the
\Rightarrow impedance at the input of the line is $z_{1}=1+$ $j x$ or $1-j x$ (make the resistance $=50 \Omega$)
OR admittance at the input of the line is $\mathrm{y}_{1}=$ $1+j b$ or $1-j b$ (make the conductance $1 / 50$ Si.

Then add a lumped element in series or parallel to remove the reactive part of the impedance.

Matching with L-Sections

: This network topology gets its name from the fact that the series and shunt elements of the matching network form an "L" shape.
: Since it uses lumped elements, it is applicable only if the frequency is low enough, or the circuit size is small enough
Two possible L-Sections:

Matching with L-Sections

- There are eight possible combinations of inductors and capacitors in the L network:
\Rightarrow If $\boldsymbol{X}>\mathbf{0}, X$ is an inductor, if $\boldsymbol{X}<\mathbf{0}, X$ is a capacitor
\Rightarrow If $\mathbf{B}>\mathbf{0}, \mathrm{B}$ is an capacitor; if $\boldsymbol{B}<\mathbf{0}, B$ is an inductor

Example 5.1

: Design an L-section matching network to

 match a load with an impedance $Z_{L}=200$ $-j 100 \Omega$ to a 100Ω line at a frequency of 500 MHz.Since $R_{L}>Z_{0}$, we'll use the following circuit topology:

$$
Z_{\text {in }}=Z_{0}=j X+(j B+\underbrace{\frac{1}{R_{L}+j X_{L}}}_{Z_{L}})^{-1}
$$

Normalization: $Z_{L}=\frac{Z_{L}}{Z_{0}}=2-j 1$ p.u. Ω

First solution

Rotated $1+j x$ circle on admittance chart
i.e., $y=1+j b$

Solution

: Un-normalizing, we find that

$$
\begin{array}{r}
j B=j b \cdot Y_{0}=j 0.3 \cdot \frac{1}{100}=j 0.003 \mathrm{~S} \\
j X=j x \cdot Z_{0}=j 1.2 \cdot 100=j 120 \Omega
\end{array}
$$

What are the L and C values of these elements?
\Rightarrow We can identify the type of element by the sign of the reactance or susceptance:

	Inductor	Capacitor
\boldsymbol{X}	$Z_{L}=j w L$	$Z_{C}=\frac{1}{j w C}=\frac{-j}{w C}$
\boldsymbol{B}	$Y_{L}=\frac{1}{j w L}=\frac{-j}{w L}$	$Y_{C}=j w C$

Solution

: Since $B>0$, we identify this as a capacitor. Therefore,

$$
j B=j w C=j 0.003 \mathrm{~S}
$$

For operation at 500 MHz , we need

$$
C=\frac{0.003}{2 \pi f}=0.95 \mathrm{pF}
$$

Since $X>0$, we identify this as a inductor. Therefore,

$$
j X=j w L=j 120 \Omega
$$

For operation at 500 MHz , we need $\quad L=\frac{120}{2 \pi f}=38.8 \mathrm{nH}$

The final circuit is:

Let's check to see if we have really achieved a match at 500 MHz :

$$
\begin{aligned}
Z_{\text {in }} & =j 2 \pi f L+\left(j 2 \pi f C+\frac{1}{Z_{L}}\right)^{-1} \\
& =j 120+100-j 120=100+j 0 \Omega
\end{aligned}
$$

Second solution

Solution

Since $B<0$, we identify this as a inductor. Therefore,

$$
j B=\frac{-j}{w L}=-j 0.007 \mathrm{~S}
$$

For operation at 500 MHz , we need $L=\frac{1}{2 \pi f B}=45.47 \mathrm{nH}$
Since $X<0$, we identify this as a capacitor. Therefore,

$$
j X=\frac{-j}{w C}=-j 120 \Omega
$$

For operation at 500 MHz , we need

The final circuit is:

$$
C=\frac{1}{2 \pi f X}=2.65 \mathrm{pF}
$$

Single-Stub Tuner (SST) Matching

IV The SST uses a shorted or open section of T-Line attached at some position along another T-Line.

It does not require lumped elements.
It can be used for extremely high frequencies.
12 It uses segments of T-lines with the same Z_{0} (not necessary) used for the feeding line.

III Easy to fabricate, the length can easily be made adjustable and little to no power is dissipated in the stub. (An open stub is sometimes easier to fabricate than a short.)

It is very convenient for microstrip and stripline technologies.

Microstrip line

Single-Stub Shunt Matching

- First T-Line converts $Y_{L}=1 / Z_{L}$ to an admittance $Y_{0}+j B$
I. Second T-Line converts a short or an open to an admittance $-j B$

Single-Stub Series Matching

Short or open
|2. First T-Line converts Z_{L} to an impedance $Z_{0}+j X$
1: Second T-Line converts a short or an open to an impedance $-j X$
IIWe only need to find d and ℓ_{s}

SST Using the Smith Chart

 In terms of quantities normalized to Z_{0} or Y_{0}, the geometry isRecall that the operation of the SST requires that

1. d is chosen such that y_{1}^{\prime} has a real part $=1$, i.e., $y_{1}^{\prime}=1 \pm$ $j b_{s}$.
2. The imaginary part of y_{1}^{\prime} is removed by the stub susceptance after choosing the proper length ℓ_{s}.
This produces $y_{i n}=1$, which is
 the matched state.

Example 5.2: Using the Smith chart, design a shorted shunt, single-stub tuner to match the load $Z_{L}=60-j 80 \Omega$ to a TLine with characteristic impedance $Z_{0}=50 \Omega$.
The normalized load impedance is: $\quad z_{L}=1.2-j 1.6$ p.u. Ω

First solution

Second solution

Solution: Smith

(There will be two solutions. Both of these give $y^{\prime}=1 \pm j b_{s}$.
: For this example, we find from the Smith chart that
(I) $y_{1}^{\prime}=1+j 1.47$
(II) $y_{2}^{\prime}=1-j 1.47$
\square From these rotations we can compute d as
(I) $d_{1}=0.176 \lambda-0.065 \lambda=0.110 \lambda$
(II) $d_{2}=0.325 \lambda-0.065 \lambda=0.260 \lambda$

Next, find the stub lengths ℓ_{s} :
(I) want $b_{s 1}=-1.47$
(II) want $b_{s 2}=1.47$

When either of these two susceptances is added to y_{1}^{\prime}, then $\boldsymbol{y}_{\boldsymbol{i n}}=\mathbf{1}$.

Solution: Smith

The stub lengths can be determined directly from the Smith chart.

On the Smith admittance chart, $\boldsymbol{y}_{L}=\infty$ is located at $\mathfrak{R e}\{\boldsymbol{\Gamma}\}=\mathbf{1}$, $\mathfrak{J} \boldsymbol{e}\{\boldsymbol{\Gamma}\}=\mathbf{0}$. From there, rotate "wavelengths towards generator" to:
(I) $b_{s}=-1.47 \Rightarrow \ell_{s 1}=0.345 \lambda-0.25 \lambda=0.095 \lambda$
(II) $b_{s}=+1.47 \Rightarrow \ell_{s 2}=0.25 \lambda+0.155 \lambda=0.405 \lambda$

The final two solutions are:
(I) $d_{1}=0.110 \lambda$ and $\ell_{s 1}=0.095 \lambda$
(II) $d_{2}=0.260 \lambda$ and $\ell_{s 2}=0.405 \lambda$

Solution: Smith

I․ Solution 1 has a significantly better bandwidth than solution 2 .
\# Shorter stub produces wider bandwidth.

